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1.1 The first fundamental tensor

The development of geometrical intuition and of computationally

efficient methods for use in string and membrane theory has been

hampered by a tradition of publishing results in untidy, highly gauge

dependent, notation (one of the causes being the undue influence still

exercised by Eisenhart’s obsolete treatise “Riemannian Geometry” [1]).

For the intermediate steps in particular calculations it is of course

frequently useful and often indispensible to introduce specifically adapted

auxiliary structures, such as curvilinear worldsheet coordinates σi

(i = 0, ..., d- 1) and the associated bitensorial derivatives, namely

xµ
,i =

∂xµ

∂σi
. (1)
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It is also frequently useful to introduce (adapted) orthonormal frame

vectors, namely an internal subset of vectors ι
A

µ (A = 0, ... , d–1)

tangential to the worldsheet and an external subset of vectors λ
X

µ

(X = 1, ... , n–d) orthogonal to the worldsheet, as characterised by

ι
A

µι
Bµ = η

AB
, ι

A

µλ
Xµ = 0 , λ

X

µλ
Y µ = δ

XY
, (2)

where η
AB

is a fixed d-dimensional Minkowski metric and the Kronecker

matrix δ
XY

is a fixed (n–d)-dimensional Cartesion metric, but even in

the most recent literature there are still many examples of insufficient

effort to sort out the ensuing clutter of indices of different kinds (Greek

or Latin, early or late, small or capital) by grouping the various

contributions into simple tensorially covariant combinations.
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Another inconvenient feature of many publications is that results have

been left in a form that depends on some particular gauge choice (such

as the conformal gauge for internal string coordinates) which obscures

the relationship with other results concerning the same system but in a

different gauge.

The strategy adopted here [2] aims at minimising such problems (they

can never be entirely eliminated) by working as far as possible with a

single kind of tensor index, which must of course be the one that is most

fundamental, namely that of the n-dimensional coordinates, xµ , on the

background spacetime with metric gµν .
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Thus, to avoid dependence on the internal frame index A (which is

lowered and raised by contraction with the fixed d-dimensional

Minkowski metric η
AB

and its inverse ηAB ) and on the external frame

index X (which is lowered and raised by contraction with the fixed

(n-d)-dimensional Cartesian metric δ
XY

and its inverse δXY ), the

separate internal frame vectors ι
A

µ and external frame vectors λ
X

µ

will as far as possible be eliminated in favour of the frame gauge

independent combinations

ηµ
ν = ι

A

µιA

ν , ⊥µ
ν = λ

X

µλX

ν . (3)

The former, ηµ
ν , is what will be called the (first) fundamental tensor

of the metric, which acts as the (rank d) operator of tangential

projection onto the world sheet, while the latter, ⊥µ
ν , is the (rank n–d)

operator of projection orthogonal to the world sheet.
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The same principle applies to the avoidance of unnecessary involvement

of the internal coordinate indices which are lowered and raised by

contraction with the induced metric on the worldsheet as given by

ηij = gµνx
µ
,ix

ν
,j , (4)

and with its contravariant inverse ηij . After being cast (by index

raising if necessary) into its contravariant form, any internal coordinate

tensor can be directly projected onto a corresponding background tensor

in the manner exemplified by the intrinsic metric itself, which gives

ηµν = ηijxµ
,ix

ν
,j . (5)
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The formula (5) provides an alternative (more direct) prescription for the

fundamental tensor that was previously introduced via the use of the

internal frame in (3). This approach also provides a direct prescription

for the complementary orthogonal projector that was introduced via an

external frame in (3) but is also obtainable immediately from (5) as

⊥µ
ν = gµ

ν − ηµ
ν . (6)

As well as having the separate operator properties

ηµ
ρ ηρ

ν = ηµ
ν , ⊥µ

ρ⊥ρ
ν = ⊥µ

ν (7)

the tensors defined by (5) and (6) will evidently be related by

ηµ
ρ⊥ρ

ν = 0 = ⊥µ
ρη

ρ
ν . (8)
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1.2 The inner and outer curvature tensors

In so far as we are concerned with tensor fields such as the frame vectors

whose support is confined to the d-dimensional world sheet, the effect of

Riemannian covariant differentation ∇µ along an arbitrary directions on

the background spacetime will not be well defined, only the

corresponding tangentially projected differentiation operation

∇µ

def

= η ν
µ∇ν , (9)

being meaningful for them, as for instance in the case of a scalar field ϕ
for which the tangentially projected gradient is given in terms of internal

coordinate differentiation simply by ∇µϕ = ηijxµ
,i ϕ,ji .

9



'

&

$

%

An irreducible basis for the various possible covariant derivatives of the

frame vectors consists of the internal rotation pseudo-tensor ρ ν
µ ρ and

the external rotation (or “twist”) pseudo-tensor ̟ ν
µ ρ as given by

ρ ν
µ ρ = ην

σ ιA
ρ∇µ ι

A

σ = −ρµρ
ν ,

̟ ν
µ ρ = ⊥ν

σ λX

ρ∇µλX

σ = −̟µρ
ν, (10)

together with their mixed analogue Kµν
ρ which is obtainable in a pair

of equivalent alternative forms given by

Kµν
ρ = ⊥ρ

σ ιA

ν∇µ ι
A

σ = −ησ
ν λ

X

ρ∇µλX

σ . (11)
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The reason for qualifying the fields (10) as “pseudo” tensors is that

although they are tensorial in the ordinary sense with respect to changes

of the background coordinates xµ they are not geometrically well defined

just by the geometry of the world sheet but are gauge dependent in the

sense of being functions of the choice of the internal and external frames

ι
A

µ and λ
X

µ. The gauge dependence of ρ ν
µ ρ and ̟ ν

µ ρ means that both

of them can be set to zero at any chosen point on the worldsheet by

choice of the relevant frames in its vicinity. However the condition for it

to be possible to set these pseudo-tensors to zero throughout an open

neigbourhood is the vanishing of the curvatures of the corresponding

frame bundles as characterised with respect to the respective invariance

subgroups SO(1,d–1) and SO(n–d) into which the full Lorentz

invariance group SO(1,n–1) is broken by the specification of the

d-dimensional world sheet orientation.
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The existence of a gauge in which ρ ν
µ ρ vanishes locally depends on the

vanishing of the inner curvature of Riemannian type, that is obtainable

(by a calculation of the type originally developed by Cartan that was

made familiar to physicists by Yang Mills theory) as [3]

Rκλ
µ
ν = 2ηµ

ση
τ
µη

π
[λ∇κ]ρ

σ
π τ + 2ρ[κ

µπρλ]πν . (12)

The analogue for the “twist” tensor ̟ ν
µ ρ the outer curvature of less

familiar type that is given [3] by

Ωκλ
µ
ν = 2⊥µ

σ⊥τ
µ ηπ

[λ∇κ]̟
σ

π τ + 2̟[κ
µπ̟λ]πν . (13)

The frame gauge invariance of the expressions (12) and (13) – whereby

Rκλ
µ
ν and Ωκλ

µ
ν are unambiguously well defined as tensors in the

strictest sense of the word – is not obvious from the foregoing formulae,

but will be made manifest in the alternative expressions given below.
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1.3 The second fundamental tensor

Another, even more important, gauge invariance property that is not

obvious from the traditional approach – as recapitulated above – is that

of the entity Kµν
ρ defined by the mixed analogue (11) of (10), which

(unlike ρ ν
µ ρ and ̟ ν

µ ρ , but like Rκλ
µ
ν and Ωκλ

µ
ν ) is a

geometrically well defined tensor in the strict sense. The frame gauge

independence of (11) can be seen from its agreement with the

alternative – manifestly gauge independent – definition [4]

Kµν
ρ

def

= η σ
ν∇µη

ρ
σ . (14)

whereby the entity that we refer to as the second fundamental tensor

is constructed directly from the the first fundamental tensor ηµν as

given by (5).
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As this second fundamental tensor, Kµν
ρ will play an important role in

the work that follows, it is worth lingering over its essential properties.

The expression (14) could of course be meaningfully applied not only to

the fundamental projection tensor of a d-surface, but also to any

(smooth) field of rank-d projection operators η µ
ν as specified by a field

of arbitrarily orientated d-surface elements. What distinguishes the

integrable case – in which the elements mesh together to form a well

defined d-surface through the point under consideration – is the

Weingarten identity, whereby that the tensor defined by (14) will have

the symmetry property

K [µν]
ρ = 0 , (15)

an integrability condition that is derivable [4], [3] as a version of the

well known Frobenius theorem.

14



'

&

$

%

As well as being symmetric, the tensor Kµν
ρ is obviously tangential on

the first two indices and also orthogonal on the last :

⊥σ
µKσν

ρ = Kµν
σησ

ρ = 0 . (16)

This second fundamental tensor fully determines the tangential

derivatives of the first fundamental tensor η µ
ν by the formula

∇µηνρ = 2Kµ(νρ) , (17)

(using round brackets to denote symmetrisation) and it can be seen to

be characterisable by the condition that the orthogonal projection of the

acceleration of any tangential unit vector field u µ will be given by

u
µ
u

νKµν
ρ = ⊥ρ

µ u̇
µ , u̇

µ = u
ν∇ν u

µ . (18)

15



'

&

$

%

1.4 The extrinsic curvature vector and the

conformation tensor

It is very practical for a great many purposes to introduce the extrinsic

curvature vector Kµ , defined as the trace of the second fundamental

tensor, which is automatically orthogonal to the worldsheet,

Kµ
def

= Kν
ν
µ = ∇µη

µν , ηµ
νK

ν = 0 . (19)

It is useful for many specific purposes to work this out in terms of the

intrinsic metric ηij and its determinant |η| . For the tangentially

projected gradient of a scalar field ϕ on the worldsheet, it suffices to use

the simple expression

∇µϕ = ηijxµ
,iϕ,j .
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However for a tensorial field (unless one is using Minkowski coordinates

in a flat spacetime) the gradient will also have contributions involving

the background Riemann Christoffel connection

Γ ν
µ ρ = gνσ

(
gσ(µ,ρ) − 1

2
gµρ,σ

)
. (20)

The curvature vector is thus obtained in explicit detail as

Kν =
1√
‖η‖

(√
‖η‖ηijxν

,i

)
,j + ηijxµ

,ix
ρ
,jΓ

ν
µ ρ . (21)

This expression is useful for specific computational purposes, but much

of the literature on cosmic string dynamics has been made unnecessarily

heavy by a tradition of working all the time with long strings of non

tensorial terms such as those on the right of (21) rather than exploiting

more succinct tensorial expressions, such as Kν = ∇µη
µν .
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As an alternative to the universally applicable tensorial approach

advocated here, there is of course another more commonly used method

of achieving succinctness in particular circumstances, which is to sacrifice

gauge covariance by using specialised kinds of coordinate system.

In particular, for the case of a string, i.e. for a 2-dimensional

worldsheet, it is standard practise to use conformal coordinates σ0 and

σ1 so that the corresponding tangent vectors ẋµ = xµ
,0

and

x′µ = xµ
,1

satisfy the restrictions ẋµx′
µ = 0 , ẋµẋµ + x′µx′

µ = 0 ,

which implies
√

‖η‖ = x′µx′
µ = −ẋµẋµ , so that (21) simply gives

√
‖η‖Kν = x′′ν −ẍν + (x′µx′ρ −ẋµẋρ)Γ ν

µ ρ .
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The physical specification of the extrinsic curvature vector (19) for a

timelike d-surface in a dynamic theory provides what can be taken as the

equations of extrinsic motion of the d-surface [4], [5], the simplest

possibility being the “harmonic” condition Kµ = 0 that is obtained (as

will be shown in the following sections) from a surface measure

variational principle such as that of the Dirac membrane model [6], or of

the Goto-Nambu string model [7] whose dynamic equations in a flat

background are therefore expressible with respect to a standard

conformal gauge in the familiar form x′′µ −ẍµ = 0 ,

There is a certain analogy between the Einstein vacuum equations,

which impose the vanishing of the trace Rµν of the background

spacetime curvature Rλµ
ρ
ν , and the Dirac-Gotu-Nambu equations,

which impose the vanishing of the trace Kν of the second fundamental

tensor Kλµ
ν ,
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Just as it is useful to separate out the Weyl tensor [8], i.e. the trace free

part of the Ricci background curvature which is the only part that

remains when the Einstein vacuum equations are satisfied, so also

analogously, it is useful to separate out the the trace free part of the

second fundamental tensor, namely the extrinsic conformation tensor [3],

which is the only part that remains when equations of motion of the

Dirac - Goto - Nambu type are satisfied. Explicitly, the trace free

extrinsic conformation tensor C µν
ρ of a d-dimensional imbedding is

defined [3] in terms of the corresponding first and second fundamental

tensors ηµν and Kµν
ρ as

C µν
ρ

def

= Kµν
ρ − 1

d
ηµνK

ρ , C
ν
ν
µ = 0 . (22)
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Like the Weyl tensor Wλµ
ρ
ν of the background metric (whose definition

is given implicitly by (27) below) this conformation tensor has the

noteworthy property of being invariant with respect to conformal

modifications of the background metric :

gµν 7→ e2αgµν ⇒ Kµν
ρ 7→ Kµν

ρ + ηµν⊥ρσ∇σα ,

C µν
ρ 7→ C µν

ρ . (23)

This formula is useful [9] for calculations of the kind undertaken by

Vilenkin [10] in a standard Robertson-Walker type cosmological

background, which can be obtained from a flat auxiliary spacetime

metric by a conformal transformation for which eα is a time dependent

Hubble expansion factor.
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1.5 Codazzi, Gauss, and Schouten identities

As the higher order analogue of (14) we can go on to introduce the third

fundamental tensor[4] as

Ξλµν
ρ

def

= η σ
µη

τ
ν⊥ρ

α∇λKστ
α , (24)

which by construction is obviously symmetric between the second and

third indices and tangential on all the first three indices. In a spacetime

background that is flat (or of constant curvature as is the case for the

DeSitter universe model) this third fundamental tensor is fully symmetric

over all the first three indices by what is interpretable as the generalised

Codazzi identity.
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In a background with arbitrary Riemann curvature Rλµ
ρ
σ the

generalised Codazzi identity is expressible [3] as

Ξλµν
ρ = Ξ(λµν)

ρ +
2

3
η σ

λη
τ
(µη

α
ν)Rστ

β
α⊥ρ

β (25)

A script symbol R is used here in order to distinguish the (n-

dimensional) background Riemann curvature tensor from the intrinsic

curvature tensor (12) of the (d- dimensional) worldsheet to which the

ordinary symbol R has already allocated. For many of the applications

that will follow it will be sufficient just to treat the background

spacetime as flat, i.e. to take Rστ
β

α = 0 .
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For n > 2, the background curvature tensor will be decomposible (if

present) in terms of the background Ricci tensor and its scalar trace,

Rµν = Rρµ
ρ
ν , R = Rν

ν , (26)

and of its trace free conformally invariant Weyl part Wµν
ρ
σ – which

can be non zero only for n ≥ 4 – in the well known [8] form

Rµν
ρσ = Wµν

ρσ +
4

n−2
g

[ρ
[µR

σ]
ν] −

2

(n−1)(n−2)
Rg

[ρ
[µg

σ]
ν] . (27)

In terms of the tangential projection of this background curvature, the

corresponding internal curvature tensor (12) takes the form

Rµν
ρ
σ = 2Kρ

[µ
τKν]στ + η κ

µη
λ
νRκλ

α
τη

ρ
αη τ

σ , (28)

which is the translation into the present scheme of what is well known

in other schemes as the generalised Gauss identity.
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The less well known analogue (attributable [8] to Schouten) for the

(trace free conformally invariant) outer curvature (13) is expressible [3]

in terms of the relevant projection of the background Weyl tensor as

Ωµν
ρ
σ = 2 C [µ

τρ
C ν]τσ + η κ

µη
λ
νWκλ

α
τ⊥ρ

α⊥τ
σ . (29)

In a background that is flat or conformally flat (for which it is necessary,

and for n ≥ 4 sufficient, that the Weyl tensor should vanish) the

vanishing of the extrinsic conformation tensor C µν
ρ will therefore be

sufficient (independently of the behaviour of the extrinsic curvature

vector Kµ ) for vanishing of the outer curvature tensor Ωµν
ρ
σ , which

is the condition for it to be possible to construct fields of vectors λµ

orthogonal to the surface and such as to satisfy the generalised

Fermi-Walker propagation condition to the effect that ⊥ρ
µ∇νλρ should

vanish.
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1.6 Internal Ricci and Conformal Curvatures.

The conclusion of the preceding paragraph is an illustration of the

critically significant role of the conformation tensor C µν
ρ of an

imbedding when the background is conformally flat, which suggests the

interest of examining its role with respect to the inner curvature,

Rκλ
µ
ν in this conformally flat case, for which the condition that the

background Weyl tensor should vanish is necessary – and for n ≥ 4 also

sufficient [8] – while when the background dimension is n = 3 this

condition, namely Wκλ
µ
ν = 0 , will will hold in any case as an

identity. Conformal flatness is of course compatible with the most

common applications, in which the background is taken to be flat in the

strong sense, as a justifiable approximation in typical circumstances for

which the characteristic length scales of the imbedding will be small

compared with those of the background curvature.
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Leaving aside the trivial (always locally conformally flat) case of a

2-dimensional background, the Gauss relation (28) reduces to

Rκλ
µ
ν = ηκ

ρηλ
σWρσ

τ
υη

µ
τη

υ
ν + 2K [κ

µσKλ]νσ

+ 2
n−2

(
η[κ

µηλ]
ρην

σ−ην[κηλ]
ρηµσ

)(
Rρσ− R

2(n−1)gρσ

)
.

The internal Ricci tensor is thus obtained in terms of the tracefree and

trace parts C λµ
ν and Kρ of the second fundamental tensor in the

form

Rµν = Wµν − C µ
ρσ
C νρσ + d−2

d C µν
σKσ + d−1

d2 KσKσ ηµν

+d−2
n−2ηµ

ρην
σRρσ + 1

n−2

(
ηρσRρσ − d−1

n−1R
)
ηµν ,

where the background Weyl contribution, if any, is given by the

expressions

Wµν = ηµ
σην

κ Wρσ
τ
κη

ρ
τ = −ηµ

σην
κ Wρσ

τ
κ⊥ρ

τ ,
of which the last version is obtained as a consequence of the

tracelessness of the Weyl tensor.
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The corresponding Ricci scalar for the internal geometry (whose surface

integral in the special (string) case d=2 gives the ordinary Gauss Bonnet

type invariant that was mentionned at the end of section 8) is thus

finally obtained in the form

R = W− C λµ
ν
C

λµ
ν + d−1

d KσKσ + d−1
n−2

(
2ηρσRρσ − d

n−1R
)

,
(which corrects a transcription error whereby a factor of two was

omitted in the original version [3]) where the final Weyl contribution is

just the trace,

W = Wν
ν = ηρτWρσ

τ
νη

ν
τ = ⊥ρτWρσ

τ
ν⊥ν

τ ,
which can be seen to vanish identically unless both the dimension and

the codimension of the worldsheet are greater than one, i.e. unless both

d≥ 2 and n-d≥ 2.
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For cases in which the imbedded surface has dimension d≤ 3, as must

always be the case in an ordinary 4-dimensional space-time background,

the specification of the Ricci contribution provides all that is needed to

specify the complete inner curvature tensor. However to fully specify

Rκλ
µ
ν in higher dimensional cases for which the imbedded surface has

dimension d≥ 4 it will also be necessary to take account of the

generically non zero conformal curvature term Cκλ
µ
ν that will

contribute to the total as given by the internal analogue of (27), namely

Rµν
ρσ = Cµν

ρσ +
4

d−2
η

[ρ
[µR

σ]
ν] −

2

(d−1)(d−2)
Rη

[ρ
[µη

σ]
ν] , (30)

The rather greater algebraic effort required to work out this inner

conformal curvature contribution is rewarded by the qualitatively tidy

form of the result, which turns out to be homogeneously quadratic in the

conformation tensor alone.

29



'

&

$

%

The contributions of the trace vector Kµ and of the background Ricci

tensor Rµν are again (as in (29)) found to miraculously cancel out

altogether, leaving

Cκλ
µν = 2 C [κ

µσ
C λ]

ν
σ − 4

d−2

(
C

ρ[µ
ση

ν]
[κ C λ]ρ

σ + η[κ
[µWλ]

ν]
)

− 2
(d−2)(d−1)η[κ

µηλ]
ν
(
C ρσ

τ
C

ρσ
τ −W

)
+ηκ

ρηλ
σWρσ

τ
υη

µ
τη

υν .

We can thus draw the memorable conclusion that in a conformally flat

background the vanishing of the conformation tensor C µν
ρ is a sufficient

condition not only for (local) outer flatness but also for (local) internal

conformal flatness, at least for an imbedded surface with dimension

d≥ 4. With a little more work[3] it can be shown that this conclusion

also holds for d=3, while it is trivial for the case of a string worldheet

d=2, which is always (locally) conformally flat.
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1.7 Special case of string worldsheet

The following work will deal mainly with the case d=2 of a string, for

which an orthonormal tangent frame will consist just of a timelike

vector, ι0
µ , and a spacelike vector, ι1

µ . Their exterior product vector

is the frame independent antisymmetric unit surface element tensor

Eµν = 2ι0
[µι1

ν] = 2
(
−|η|

)−1/2
x[µ

,0
xν]

,1
, (31)

whose tangential gradient satisfies

∇λEµν = −2Kλρ
[µEν]ρ . (32)

This is the special d=2 case of formula (B9) in which a sign adjustment

factor (−1)d−1 was omitted in the original analysis[3] (of which another

misprint was omission in the first term of formula (10.4) of the factor 2).
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In this d=2 case the inner rotation pseudo tensor (10) is determined just

by a corresponding rotation covector ρµ according to the specification

ρ µ
λ ν =

1

2
Eµ

νρλ , ρλ = ρ µ
λ νEν

µ . (33)

This can be used to see from (12) that the Ricci scalar,

R = Rν
ν Rµν = Rρµ

ρ
ν , (34)

of the 2-dimensional worldsheet will have the well known property of

being a pure surface divergence, albeit of a frame gauge dependent

quantity :

R = ∇µ

(
Eµνρν

)
. (35)
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In the specially important case of a string in ordinary 4-dimensional

spacetime, i.e. when we have not only d=2 but also n =4, the

antisymmetric background measure tensor ελµνρ can be used to

determine a scalar (or more strictly, since its sign is orientation

dependent, a pseudo scalar) magnitude Ω for the outer curvature

tensor (13) (despite the fact that its traces are identically zero)

according to the specification

Ω =
1

2
Ωλµνρ ελµνρ . (36)

Under these circumstances one can also define a “twist” covector ̟µ ,

that is the outer analogue of ρµ , according to the specification

̟ν =
1

2
̟ µλ

ν ελµρσ Eρσ . (37)
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Using (37) it can be deduced from (13) that the outer curvature

(pseudo) scalar Ω of a string worldsheet in 4-dimensions has a

divergence property of the same kind as that of its more widely known

Ricci analogue (35), the corresponding formula being given by

Ω = ∇µ

(
Eµν̟ν

)
. (38)

It is to be remarked that for a compact spacelike 2-surface the integral

of (32) gives the well known Gauss Bonnet invariant, but that the

timelike string worldsheets under consideration here will not be

characterised by any such global invariant since they will not be compact

(being open in the time direction even for a loop that is closed in the

spacial sense). The outer analogue of the Gauss Bonnet invariant that

arises from (36) for a spacelike 2-surface has been discussed by Penrose

and Rindler [11] but again there is no corresponding global invariant in

the necessarily non-compact timelike case of a string worldsheet.
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2 Laws of motion for a regular pure

brane complex
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2.1 Definition of brane complex

The term p-brane has come [12], [13] to mean a dynamic system

localised on a timelike support surface of dimension d=p+1 , imbedded

in a spacetime background of dimension n > p . Thus a zero - brane

means what is commonly referred to as a “point particle”, and a 1-brane

means what is commonly referred to as a “string”, while a 2-brane

means what is commonly called a “membrane” (whence the generic

term “brane”).

At the upper extreme, the “improper” case of an ( n-1)-brane is what is

commonly referred to as a “medium” (as exemplified by a simple fluid).

The codimension-1 (hypersurface supported) case of an ( n-2)-brane (as

exemplified by a cosmological domain wall) is what may be referred to as

a “hypermembrane”, while the codimension-2 case of an ( n-3)-brane is

what may analogously be referred to as a “hyperstring”.
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A set of branes of diverse dimensions will constitute a “geometrically

regular” brane complex if the support surface of each (d-1)-brane

member is a smoothly imbedded d-dimensional timelike submanifold of

which the boundary, if any, is a disjoint union of support surfaces of lower

dimensional members of the set. For the complex to qualify as regular in

the strong dynamic sense, it is also required that a p-brane member can

act directly only on an (p-1)-brane member on its boundary or on a

(p + 1)-brane member on whose boundary it is itself located, though it

may be passively influenced by higher dimensional background fields.

Direct mutual interaction between branes with dimension differing by 2

or more will usually lead to divergences, symptomising the breakdown of

a strict – meaning thin limit – brane description. To cure that properly, a

more elaborate treatment – allowing for finite thickness – would be

needed, but it may suffice to use a thin limit approximation wherby the

divergence is absorbed in a renormalisation.
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Nautical archetype of a regular brane complex in which a 3-brane (the

wind) acts (by pressure discontinuity) on a 2-brane (the sail) hemmed by

three 1-branes (bolt ropes) terminating on 0-branes (shackles) that are

held in place by three more (free) 1-branes (external stay/sheet ropes).
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In the case of a brane complex, the total action I will be given as a

sum of contributions from the various (d-1)-branes of the complex, of

which each has its own Lagrangian d-surface density scalar (d)L say.

Each supporting d-surface will be specified by a mapping σ 7→ x{σ}
giving the local background coordinates xµ (µ = 0, .... , n-1) as

functions of local internal coordinates σi ( i = 0, ... , d-1). The

corresponding d-dimensional surface metric tensor (d)ηij induced as the

pull back of the n-dimensional background spacetime metric gµν ,

determines the surface measure, (d)dS , in terms of which the total

action will be expressible as

I =
∑

d

∫
(d)dS (d)L , (d)dS =

√
‖(d)η‖ ddσ . (39)
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For purposes such as the calculation of radiation, it may be useful to

replace the confined (d-surface supported) but locally regular

Lagrangian scalar fields (d)L by corresponding unconfined, so no longer

regular but distributional fields (d)L̂ , so as to allow the total action

(39) to be represented as a single background spacetime integral,

I =

∫
dS

∑

d

(d)L̂ , dS =
√

‖g‖ dnx . (40)

This requires the distributional action (d)L̂ for each (d-1)-brane of the

complex to be given in terms of the regular d-surface density scalar (d)L

by the prescription expressible in Dirac notation as

(d)L̂ = ‖g‖−1/2

∫
(d)dS (d)L δn[x − x{σ}] . (41)
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2.2 Current, vorticity, and stress-energy tensor

As well as on its own internal (d-1)-brane surface fields and their

derivatives, and those of any attached d-brane, each contribution (d)L
will also depend (passively) on the spacetime metric gµν and perhaps

other background fields, such as a Maxwellian gauge potential Aµ , or a

generalised Kalb-Ramond gauge field B
[r]

ν1...νr
= B

[r]

[ν1...νr]
. In the

unpolarised (fine) brane limit considered here the action will not depend

on the background field derivatives. These give corresponding fields

Fµν = 2∇[µAν] , N
[r+1]

µν1...νr
= (r + 1)∇[µB

[r]

ν1...νr],
which are invariant under gauge changes

Aµ 7→Aµ+∇µα, B
[r]

ν1ν2...νr
7→ B

[r]

ν1ν2....νr
+ r!∇[ν1

χν2...νr],
and are automatically closed :

∇[ρFµν] = 0 , ∇[ρN
[r+1]

µν1...νr] = 0 .
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Subject to the internal dynamic equations of motion given by the

variational principle stipulating preservation of the action by variations of

the independent field variables, the effect of arbitrary infinitesimal

“Lagrangian” variations
L
δAµ L

δB
[r]

µν ,
L
δgµν of the background fields will

be to induce a corresponding variation of the simple form

δI=
∑

d

∫
(d)dS

(
(d)jµ

L
δAµ+ 1

r!
(d)w

ν1...νr

[r] L
δB

[r]

ν1...νr
+ 1

2
(d)T µν

L
δgµν

)
,

from which, for each (d−1)-brane, one can read out the

electromagnetic surface current vector (d)jµ , the surface flux

(generalised vorticity) r-vector (d)w
ν1...νr

[r]
= (d)w

[ν1...νr]
[r]

, and, since

L
δ((d)dS) = 1

2
(d)ηµν(

L
δgµν) (d)dS , the surface stress momentum energy

tensor

(d)T µν = (d)T νµ = 2
∂(d)L

∂gµν
+ (d)L (d)ηµν . (42)
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2.3 Conservation of current and vorticity

Arbitrary gauge changes
L
δAν = ∇να, and B

[r]

ν1ν2...
= r!∇[ν1

χν2...],
with

L
δgµν = 0 , can only leave the action invariant

∑
d

∫
d(d)S

(
(d)jν∇να+ (d)w

ν1ν2...
[r]

∇ν1
χν2...

)
=0, if the current

(d)jµ and vorticity flux (d)w
ν1ν2....
[r]

are purely d-surface tangential :

their contractions with the rank (n-d) orthogonal projector
(d)⊥µ

ν =gµ
ν− (d)ηµ

ν must vanish, (d)⊥µ
ν
(d)jν =0, (d)⊥µ

ν
(d)w

νν2...
[r]

=0.

Thus decomposing the full gradient operator ∇µ into tangential and

orthogonally projected parts (d)∇µ = (d)ην
µ∇ν and (d)⊥ν

µ∇ν , one

sees that the gauge invariance condition for the action takes the form∑
d

∫
(d)dS

(
α (d)∇ν

(d)jν+χν2...
(d)∇ν

(d)w
νν2...
[r]

)
=

∑
d

∫
(d)dS(d)∇ν

(
(d)jνα+ (d)w

νν2...
[r]

χν2...

)
,

in which integrands on the right are pure d-surface divergences.
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For any d-dimensional support surface (d)S , Green’s theorem gives
∫

(d)dS (d)∇ν
(d)jν =

∮
(d−1)dS (d)λν

(d)jν , (43)

taking the integral on the right over the boundary (d-1)-surface of

∂ (d)S of (d)S , where (d)λν is the (uniquely defined) outward directed

unit tangent vector on the d-surface at its (d-1)-dimensional boundary.

The gauge invariance condition on the action can thereby be reduced to∑
p

∫
(p)dS

{
α
(

(p)∇ν
(p)jν−

∑
d=p+1

(d)λν
(d)jν

)

+χν2...

(
(p)∇ν

(p)w
νν2...
[r]

−
∑

d=p+1
(d)λν

(d)w
νν2...
[r]

)}
= 0

where, for any p-dimensionally supported (p-1)-brane, the summation

“over d=p+1” is to be understood as consisting of a contribution from

each (p+1)-dimensionally supported p-brane attached to it.
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The Maxwell gauge invariance condition (independence of α ) is thus

seen to be equivalent to the electric current conservation condition

(p)∇µ
(p)jµ =

∑

d=p+1

(d)λµ
(d)jµ , (44)

which means that the source of charge injection into any particular

(p-1)-brane is the sum of the currents flowing in from the p-branes to

which it is attached. The generalised Kalb-Ramond gauge invariance

condition (independence of χν2...νr
) can similarly be seen to be

equivalent to the analogous (generalised vorticity) flux conservation

condition

(p)∇µ
(p)w

µν2...νr

[r]
=

∑

d=p+1

(d)λµ
(d)w

µν2...νr

[r]
. (45)
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2.4 Force and the stress balance equation

The condition of being “Lagrangian” means that
L
δ is comoving as

needed to be meaningful for fields with support confined to a particular

brane. However for background fields one can also define an “Eulerian”

variation,
E
δ , with respect to some appropriately fixed reference system,

in which the infinitesimal displacement of the brane complex is specified

by a vector field ξµ . The difference will be given by

L
δ −

E
δ = ~ξ–L , (46)

where the ~ξ–L is the Lie differentiation operator, which will be given

for the relevant background fields by ~ξ–LAµ = ξρ∇ρAµ+Aρ∇µξ
ρ ,

~ξ–LB
[r]

µν2...
=ξρ∇ρB

[r]

µν2...
+ rB

[r]

ρ[ν2...∇µ]ξ
ρ and ~ξ–Lgµν =2∇(µξν) .
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In a fixed Eulerian background, the background fields will have

Lagrangian variations given just by their Lie derivatives with respect to

the displacement ξµ . Subject to the internal field equations, the action

variation δI due to the displacement of the branes will therefor just be∑
d

∫
(d)dS

(
(d)jν ~ξ–LAν+ 1

r!
(d)w

µν...
[r]

~ξ–LB
[r]

µν...+
1
2

(d)T µν ~ξ–Lgµν

)
.

The postulate that this vanishes for any ξµ entails the further d-surface

tangentiality restriction (d)⊥µ
ν

(d)T νρ = 0 and the requirement

∑

d

∫
(d)dS

{
ξρ

(
F ρν

(d)jν +
1

r!
N

[r+1]

ρµν...
(d)w

µν...

[r]

− (d)∇µ
(d)T µ

ρ − Aρ
(d)∇µ

(d)jµ− 1

(r − 1)!
B

[r]

ρν...
(d)∇µ

(d)w
µν...

[r]

)

+ (d)∇µ

(
ξρ(Aρ

(d)jµ+
1

(r − 1)!
B

[r]

ρν...
(d)w

µν...

[r]
+ (d)T µ

ρ)
)}

= 0 , (47)

in which the final contribution is a pure surface divergence that can be

dealt with using Green’s theorem as before.

47



'

&

$

%

The conclusion is that invariance of the action under arbitrary

displacements ξµ of the brane complex entails the dynamic equations

(p)∇µ
(p)T µ

ρ = (p)fρ , (48)

in which total force density, (p)f ρ = (p)fρ + (p)f̌ρ , includes

Faraday-Lorenz and Joukowski-Magnus contributions from the

background, as given by (p)f ρ = F ρµ
(p)jµ + 1

r!N
[r+1]

ρµν...
(p)w

µν...
[r]

.

On each (p-1)-brane, the contact force exerted by attached p-branes is

(p)f̌ρ =
∑

d=p+1

(d)λµ
(d)T µ

ρ , (49)

in which it is to be recalled that, on the (p+1)-dimensional support

surface of each attached p-brane, (d)λµ is the unit vector that is

directed normally towards the bounding (p-1)-brane.
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Nautical archetype of a regular brane complex in which a 3-brane (the

wind) acts (by pressure discontinuity) on a 2-brane (the sail) hemmed by

three 1-branes (bolt ropes) terminating on 0-branes (shackles) that are

held in place by three more (free) 1-branes (external stay/sheet ropes).
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2.5 The equation of extrinsic motion

The tangential force balance equations will hold as identities when the

internal field equations are satisfied (because a surface tangential

displacement has no effect). The non-redundent information governing

the extrinsic motion of a (p −1)-brane will be given just by the

orthogonal part. Integrating by parts, as the surface gradient of the

rank-(n − p) orthogonal projector (p)⊥µ
ν will be given in terms of the

second fundamental tensor (p)K ρ
µν of the p-surface by

(p)∇µ
(p)⊥ν

ρ = − (p)K ρ
µν − (p)K ρ

µ ν , the extrinsic equations of motion

are finally obtained in the form

(p)T µν (p)K ρ
µν = (p)⊥ρ

µ
(p)fµ . (50)
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3 Canonical Symplectic Structure

Abstract The covariant canonical variational procedure leading to the

construction of a conserved bilinear symplectic current was originally

developped in the context of field theory by Witten, Zuckerman, and

others [1, 2, 3, 4, 5, 6, 7]. The following notes describe the

generalisation of this procedure to brane mechanics in the manner

initiated by Cartas-Fuentevilla [8, 9] and developed in collaboration with

Dani Steer [10]. After a general presentation, including a review of the

relationships between the various (Lagrangian, Eulerian and other)

relevant kinds of variation, the procedure is illustrated by application to

a particular category including the case of branes of purely elastic type.
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3.1 Canonical formalism for Branes

Consider a generic conservative p-brane model whose mechanical

evolution is governed by an action integral of the form

I =

∫
L dp+1σ , (51)

over a supporting worldsheet with internal co-ordinates σi

(i = 0, 1, ... p) , and induced metric ηij = gµνx
µ
,ix

ν
,j in a

background with coordinates xµ , (µ = 0, 1, ... n − 1) ,
(n ≥ p + 1) and (flat or curved) space-time metric gµν .

The relevant Lagrangian scalar density is given by L = ‖η‖1/2L ,
where L is scalar function of a set of field components qA

– including background coords – and of their surface deriatives,

qA

,i = ∂iqA = ∂qA/∂σi .
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The relevant field variables qA can be of internal or external kind, the

most obvious example of the latter kind being the background

coordinates xµ themselves.

The generic action variation, δL = L
A
δqA + p i

A
δqA

,i ,

specifies partial derivative components L
A

and and corresponding

generalised momentum components p i
A

. The variation principle

characterises dynamically admissible “on shell” configurations by the

vanishing of the Eulerian derivative

δL
δqA

= L
A
− p i

A ,i . (52)
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In terms of this Eulerian derivative, the generic Lagrangian variation will

have the form

δL =
δL
δqA

δqA +
(
p i

A
δqA

)
,i
. (53)

There will be a corresponding pseudo-Hamiltonian scalar density

H = p i
A
qA

,i − L , (54)

for which

δH = qA

,iδp
i

A
− L

A
δqA . (55)

(The covariance of such a pseudo-Hamiltonian distingushes it

from the ordinary kind of Hamiltonian, which depends on the

introduction of some preferred time foliation.)
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For an on-shell configuration, i.e. when the dynamical equations

δL
δqA

= 0 , (56)

are satisfied, the Lagrangian variation will reduce to a pure surface

divergence,

δL =
(
p i

A
δqA

)
,i
, (57)

and the correponding on-shell pseudo-Hamiltonian variation will take

the form

δH = qA

,iδp
i

A
− p i

A ,iδq
A . (58)
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3.2 Symplectic structure

The generic first order variation of the Lagrangian will be given by

δL =
δL
δqA

δqA + ϑi
,i . (59)

in terms of the generalised Liouville 1-form (on the configuration space

cotangent bundle) defined by ϑi = p i
A
δqA .

Now consider a pair of successive independent variations δ́ , δ̀ , which

will give a second order variation of the form

δ̀δ́L = δ̀
( δL

δqA

)
δ́qA+

δL
δqA

δ̀δ́qA+
(
δ̀p i

A
δ́qA+p i

A
δ̀δ́qA

)
,i
. (60)
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Thus using the commutation relation δ̀δ́ = δ́δ̀ one gets

δ̀
( δL

δqA

)
δ́qA − δ́

( δL
δqA

)
δ̀qA = ´̟̀ i

,i , (61)

where the symplectic 2-form (on the configuration space cotangent

bundle) is defined by ´̟̀ i = δ́p i
A
δ̀qA − δ̀p i

A
δ́qA .

For an on-shell perturbation we thus obtain

δL
δqA

= 0 ⇒ δL = ϑi
,i , (62)

while for a pair of on-shell perturbations we obtain

δ́
( δL

δqA

)
= δ̀

( δL
δqA

)
= 0 ⇒ ´̟̀ i

,i = 0 . (63)
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The foregoing surface current conservation law is expressible in

shorthand as

̟i
,i = 0 , (64)

in which the closed (since manifestly exact) symplectic 2-form (59) is

specified in concise wedge product notation as

̟i = δ ∧ ϑi = δp i
A
∧ δqA . (65)

Some authors prefer to use an even more concise notation system in

which it is not just the relevant distinguishing (in our case acute and

grave accent) indices that are omitted but even the wedge symbol ∧
that indicates the antisymmetrised product relation. However such an

extreme level of abbreviation is dangerous [8] in contexts in which

symmetric products are also involved.
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3.3 Translation into strictly tensorial form.

To avoid the gauge dependence involved in the use of auxiliary

structures such as local frames and internal surface coordinates, by

working [11] just with quantities that are strictly tensorial with respect

to the background space, one needs to replace the surface current

densities whose components ϑi and ̟i depend on the choice of the

internal coordinates σi, by vectorial quantities with strictly tensorial

background coordinate components given by

Θν = ‖η‖−1/2xν
,iϑ

i , Ων = ‖η‖−1/2xν
,i̟

i . and

with strictly divergences given by

∇νΘ
ν = ‖η‖−1/2ϑi

,i , ∇νΩ
ν = ‖η‖−1/2̟i

.i
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In terms of the surface projected covariant differentiation

operator defined in terms of the fundamental tensor

ηµν = ηijxµ
,ix

ν
,j by ∇ν = ηµ

ν∇µ , one thus obtains a

Liouville current conservation law of the form

∇νΘ
ν = 0 (66)

for any symmetry generating perturbation, i.e. for any

infinitesimal variation δqA such that δL = 0 .

Similarly a symplectic current conservation law of the form

∇νΩ
ν = 0 (67)

will hold for any pair of perturbations that are on-shell, i.e. such that

δ(δL/δqA) = 0 .
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3.4 Covariant variation formulae

If the field qA is defined over the background – not just confined to

brane worldsheet with internal coordinates σi – then in terms of the

relevant displacement vector, ξµ = δxµ , with respect to a given (e.g.

Minkowski type) system of background coordinates in terms of which

∂iqA = xµ
,i∂µqA , the simple worldsheet based field component

variation δqA will be given by

δqA =
E
δqA + ξµ∂µqA . (68)

where
E
δqA is the relevant Eulerian variation, as defined with respect to

the background system.
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When one is dealing with a background field that is not simply a scalar

but of a more general tensorial nature, it will commonly be desirable to

go on to convert the Eulerian variation formula
E
δ = δ −~ξ · ∂ into

terms of covariant derivation as given by ~ξ ·∇ = ~ξ · ∂ + {~ξ · Γ}
where {~ξ · Γ} is a purely algebraic operator involving contractions with

the 2-index quantity (~ξ ·Γ)µ
ν = ξρΓ µ

ρ ν , as exemplified, for a vectorial

(e.g. Killing) field kµ , or a covectorial (e.g. Maxwellian) form Aµ , by

{~ξ · Γ}kµ = (~ξ · Γ)µ
νk

ν , and {~ξ · Γ}Aµ = −(~ξ · Γ)ν
µAν .

64



'

&

$

%

Instead of using the connection dependent covariant derivative, one can

work with the corresponding Lie derivative, as given by a prescription of

the form ~ξ–L = ~ξ · ∇ − {∇ξ} , in which the operator {∇ξ} acts

by contractions with the displacement gradient tensor ∇νξ
µ, in the

way exemplified respectively for a vector kµ , or a 1-form (i.e. covector)

Aµ , by the formulae {∇ξ}kµ = kν∇νξ
µ , and

{∇ξ}Aµ = −Aν∇µξ
ν . It can be seen that connection cancels out,

so that the Lie derivative will be equivalently expressible in terms just of

partial derivative components ∂νξ
µ as

~ξ–L = ~ξ · ∂ − {∂ξ} . (69)
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Another kind of variation that is particularly important in the context of

brane mechanics – because (unlike the Eulerian, covariant, and Lie

derivatives) it is always well defined even for fields whose support is

confined to the brane worldsheet – is what is known as the

Lagrangian variation, meaning change with respect to background

coordinates that are dragged by displacement. In the case of a field that

is not confined to the brane worldsheet, so that its Eulerian variation is

well defined, this latter kind will be related to the corresponding

Lagrangian variation by the well known Lie derivation formula

L
δ =

E
δ +~ξ–L . (70)

66



'

&

$

%

Yet another possibility that may be useful is to express the Eulerian

(fixed background point) variation in the form

E
δ =

Γ
δ −~ξ ·∇ , (71)

where parallely transported variation is defined – not just for

background field, but also for tensor confined to brane – by

Γ
δ = δ + {~ξ · Γ} , (72)

using the operator notation introduced above. This parallel variation
Γ
δ

shares with the Lagrangian variation
L
δ the important property of being

well defined not just for background fields but also for fields whose

support is confined to the brane worldsheet.
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The Lagrangian variation
L
δ will always be expressible directly in terms

of the corresponding parallel variation
Γ
δ by a relation of the form

L
δ =

Γ
δ − {∇~ξ} , (73)

in which it can be seen that connection dependence cancels out, leaving

an expression of the simple form

L
δ = δ − {∂~ξ} , (74)

where the action of the algebraic operator {∂~ξ} is exemplified for a

vector kµ , or a covector Aµ , by the formulae {∂~ξ}kµ = kν∂νξ
µ ,

and {∂~ξ}Aµ = −Aν∂µξ
ν .
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In conclusion of this overview of the relationships between the various

kinds of infinitesimal variations that are commonly useful, it is to be

mentionned that in literature dealing with purely non relativistic contexts

in which it is possible (though not necessarily wise) to work exclusively

with space coordinates of strictly Cartesian (orthonormal) type, the

variations of the kind referred to here as “parallel” are generally

described as “Lagrangian” by many authors. That usage does not

necessarily lead to confusion, because for scalars the distinction does not

arise, and because such authors systematically eschew the use (and the

technical advantages) of Lagrangian variations of the fully comoving

kind (that is considered here) by working exclusively with tensor

components that are evaluated in terms only of orthonormal frames.
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3.5 Evaluation via Lagrangian variations.

In typical applications, the relevant set of configuration components qA

will include a set of brane field components ϕα as well as the

background coords xµ , so that in terms of displacement vector

ξµ = δxµ the Liouville current will take the form

Θν = ‖η‖−1/2xν
,i

(
pα

i δϕα + p i
µ ξµ

)
= πα

ν δϕα + π ν
µ ξµ , in

which the latter version replaces the original momentum components by

the corresponding background tensorial momentum variables, which are

given by πα
ν = ‖η‖−1/2 xν

,i pα
i and π ν

µ = ‖η‖−1/2 xν
,i p

i
µ .
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To obtain an analogously tensorial formula for the symplectic current

2-form, it is convenient, as a first step, to take advantage of the

symmetry property Γ ν
µ ρ = Γ ν

ρ µ, of the Riemannian background

connection, which allows substitution of parallel variation

Γ
δp i

µ = δp i
µ − Γ ν

µ ρp
i

ν ξρ for δp i
µ so as to provide an expression of

the form

Ων = ‖η‖−1/2xν
,i

(
δpα

i ∧ δϕα +
Γ
δp i

µ ∧ ξµ
)
. (75)
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The next step is to evaluate the relevant momentum variations in terms

of the corresponding Lagrangian variations, using the formulae

‖η‖−1/2xν
,i δpα

i =
L
δπα

ν + πα
ν∇ρξ

ρ , (76)

and

‖η‖−1/2xν
,i Γ
δp i

µ =
L
δπ ν

µ − π ν
ρ ∇µξ

ρ + π ν
µ ∇ρξ

ρ . (77)

The advantage of Lagrangian variations is their convenience for relating

the relevant intrinsic physical quantities via the appropriate equations of

state.
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3.6 Application to hyperelastic case

The hyperelastic category [12] (generalising the case of an ordinary

elastic solid which includes the special case of an ordinary barotropic

perfect fluid) consists of brane models in which – with respect to a

suitably comoving internal reference system σi – there are no

independent surface fields at all – meaning that the ϕα and the pα
i

are absent – and in which the only relevant background field is the

metric gµν that is specified as a function of the external coordinates

xµ . In any such case, the generic variation of the Lagrangian is

determined just by the surface stress momentum energy density tensor

T µν according to the standard prescription

δL = 1
2‖η‖1/2 T

µν

L
δgµν , whereby T µν is specified in terms of

partial derivation of the action density with respect to the metric.
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In a fixed background (i.e. in the absence of any Eulerian variation of the

metric) the Lagrangian variation of the metric will be given, according to

the formula (70), by
L
δgµν = ~ξ–Lgµν = 2∇(µξν) . Comparing this to

canonical prescription δL = Lµξ
µ + p i

µ ξµ
,i with ξµ = δxµ shows

that the relevant partial derivatives will be given by the (non-tensorial)

formulae Lµ = ‖η‖1/2 Γ ν
µ ρTν

ρ and p i
µ = ‖η‖1/2 T µνη

ijxν
,j .

It can thus be seen that in the hyperelastic case, the canonical

momentum tensor πµ
ν and the Liouville current Θν will be given just

in terms of surface stress tensor T µν by the very simple formulae

πµ
ν = T µ

ν , Θν = T µ
νξµ . (78)
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In order to proceed, we must consider the second order metric variation,

whereby (following Friedman and Schutz [13]) the hyper Cauchy tensor

(generalised elasticity tensor) Cµνρσ = Cρσµν is specified [14] in terms

of Lagrangian variations by a partial derivative relation of the form

L
δ
(
‖η‖1/2 T µν

)
= ‖η‖1/2

C
µνρσ

L
δgρσ . (79)

The symplectic current is thereby obtained in the form

Ων = O
ν

µ ∧ ξµ , (80)

where

O
ν

µ = 2C ν σ
µ ρ ∇σξ

ρ + T νρ∇ρξµ . (81)
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4 Application to string junctions and

intercommutations
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The prototype application is to a point particle, labelled by 0, at the

junction between strings labelled by an index j that runs from 1 to 2 for

a V junction, or from 1 to 3 for a Y junction (or even 1 to 4 for an X

junction). The particle position xµ will have proper time derivative ẋµ

and acceleration ẍµ = ẋν∇νẋ
µ given, with ẋνẍν = 0 , by

ησ
0 ν∇σT

ν
0 µ = F µν jν

0
+

∑

j

λ
jνT

ν
j µ , (82)

in conjunction with the charge conservation law

ησ
0 ν∇σ jν

0
=

∑

j

λ
jν jν

j
. (83)

where the λ
jν are outward directed string tangent vectors, subject to

orthonormality conditions λν
j
λ

jν = 1 , ẋνλ
jν = 0 , ẋνẋν = −1 .
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The zero-brane fundamental tensor, energy tensor, and charge vector are

given in terms of the particle mass m
0

and charge number z
0

by

ηµν
0

= −ẋµẋν , T µν
0

= m
0
ẋµẋν , jν

0
= e z

0
ẋν ,

where e is a charge coupling constant, while K ρ
0µν =−η

0µν ẍρ .

We thus get ṁ
0
ẋµ + m

0
ẍµ − e z

0
F µνẋ

ν =
∑

j
λ

jνT
ν

j µ
,

and e ż
0

=
∑

j
λ

jν jν
j

, while as a consequence we shall have

ṁ
0
=−ẋµ

∑
j
λ

jνT
ν

j µ . If no strings attached, right hand sides will

drop out, so the proper time derivatives ṁ
0

and ż
0

must vanish,

leaving a dynamic equation of the familiar form m
0
ẍµ = e z

0
F µνẋ

ν .

Our concern here is with the opposite extreme, for which the left hand

sides drop out in the absence of a substantial particle at the junction,

i.e. when m
0

= 0 and z
0

= 0 , so that we shall be left with the

junction conditions
∑

j
λ

jνT
ν

j µ = 0 and
∑

j
λ

jν jν
j

= 0 .
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For any string model the 2 dimensional worldsheet will have unit surface

bivector and (first) fundamental tensor ηµ
ν = Eµ

ρEρ
ν expressible in

terms of any orthonormal tangent diad u
ν , ũ ν as Eµν = 2 u [µ

ũ
ν]

and ηµ
ν = − u

µ
u

ν + ũ
µ
ũ

ν . The symmetric surface stress energy

tensor will be expressible in the form

T µν = β(µ
+

βν)
−

. (84)

in terms of a pair of bicharacteristic vectors having the generically

timelike form β µ
±

=
√
U u

µ ±
√
T ũ

µ , in terms of a preferred diad

such that

T µν = U u
µ
u

ν − T ũ
µ
ũ

ν (85)

where U is the surface energy density and T the string tension.
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The magnitudes of the bicharacteristic vectors will then be given by

β
+µβ+

µ = β
−νβ−

ν = −(U − T ) , while their scalar product would

any case be given by β
+µβ

µ
−

= T ν
ν = −

(
U + T

)
.

At the junction, for the j th string, we shall have u
ν
j

= γ
j
(ẋν − v

j
λν

j
)

and ũ
ν
j

= γ
j
(λν

j
− v

j
ẋν) where γ

j
= (1 − v2

j
)−1/2 , so with

β ν
j± = β 0

j± ẋν + β 1

j± λν
j

its force contribution will be

T µν
j

λ
jν = γ2

j
(U

j
v2
j
− T

j
)λν

j
− γ2

j
v
j
(U

j
− T

j
)ẋν , (86)

= β 1

j+ β 1

j− λµ
j

+ β
(1

j+ β 0)
j− ẋµ .

At a V junction between just 2 string segments in different directions,

λµ
1
6= −λµ

2
, the coefficient of the first term in (86) and thus one of its

factors, must vanish : β 1

j+ = 0 say, so the junction worldline is itself

bicharacteristic : ẋν ∝ β ν
j+

.
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On either side of a V junction (kink) between string segments YV and

VR the relative flow speed v must satisfy the condition v2 = c
E

2

where c
E

=
√

T /U is the extrinsic (wiggle) propagation speed. The

force balance condition is then just that there be no jump discontinuity

in the energy transmission rate, which means

[√
UT

]2

1

= 0 . (87)

If the string state depends on electric and/or other surface currents,

their conservation conditions will just be equivalent to continuity of the

relevant variables.
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Now consider a Y junction (bifurcation) where a first string segment WY

splits into two branches YV and YU , which (for simplicity) we suppose

to be symmetric, both deviating by the same angle θ from the direction

of WY in the junction rest frame, so that λµ
2

+ λν
3

= −2 cos θ λν
1
.

Dropping the suffices 2,3 for the symmetrically related branches, the

force balance conditions will be expressible as

γ2
1
v
1
(U

1
−T

1
) = −2γ2v(U −T ) , (∗)

and γ2
1
(U

1
v2
1
−T

1
) = 2 cos θ γ2 (Uv2 −T ) . (a)
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If there is a current νµ = ν u µ of particles that are conserved not just

internally but also at at junctions, then in terms of the specific enthalpy,

h = (U−T )/ν , the energy conservation condition (*) will reduce to

γ
1
h

1
= γ h , (b)

by the condition
∑

j
λ

jνν
ν
j

= 0 , which, for symmetric Y-junction, is

γ
1
v
1
ν

1
= −2 γ v ν . (c)

In the ordinary elastic case, for which U depends just on T , such a

number density ν and the corresponding chemical potential or effective

mass µ = dU/dν , are specifiable by ln{ν} =
∫

dU/(U − T ) ,
with the identification µ = h . This gives two conserved currents,

νµ = ν u µ and µ̃ν = µ ũ
ν (of which one or other will be

identifiable, in the electromagnetic case enviseaged by Witten, with the

current z
ν above). The two equations (b) and (c) suffice to determine

the change in velocity and state in the elastic case, and the preceding

equation (a) then fixes the angle θ .
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As in hep-th/0601153, using frame with unit vectors

e
µ
t , e

µ
x, e

µ
y , e

µ
z , consider symmetric collision of strings ZT and

XR with directions deviating from x direction by angles ±α in y
direction, and velocities ± v z in z direction, after formation of

connecting segment WY at rest in the x direction. In terms of time t
and internal space coordinate σ, the unperturbed segments ZQ and UT

of the first string will thus have position given by

xµ = t ( e µ
t + v z e

µ
z ) + σ(cos α e

µ
x + sin α e

µ
y ) ,

with preferred internal frame given by u
µ = γz( e

µ
t + v z e

µ
z ) .
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Relative to the preferred frame, the kink U has characteristic speed c
E
,

and so is given by σ = γ−1
z c

E
t . This gives the unit bicharacteristic :

β ν
+ ∝ u

ν
+ = γ

E
γz( e

µ
t + v z e

ν
z)+c

E
γ

E
(cos α e

ν
x+sin α e

ν
y) .

The connecting string segment WY will have tangent vector

λν
1

= γ
1
( e ν

x + v
1
e

ν
t ) normal to the worldline of the junction Y, of

which the tangent ẋν = γ
1
( e ν

t + v
1
e

ν
x) is also, like u

ν
+ , tangent

to the segment YU, in which, with

γ+ =−ẋν u
ν

+ =γ
E
γ

1
(γz−c

E
v
1
cos α), the normal frame vector will

be λν = (γ 2
+−1)−1/2(γ+ ẋν − u

ν
+ ) . The prefered frame vector

with speed c
E

relative to u
ν

+ in YU is thus

u
ν = γ

E
(γ+ − c

E

√
γ 2
+−1)(ẋν − v λν) with velocity

v = ( v+ − c
E
)/(1 − c

E
v+) where v+ =

√
1 − γ −2

+ ,

which is needed for (b) and (c). Finally the angle needed for (a) is given

by cos θ = −λν
1
λν = γ

E
γ

1
(γ 2

+−1)−1/2(c
E
cos α − v

1
γz) .
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Eliminating θ , v , and its Lorenz factor γ = γ
E
γ+(1−c

E
v+) ,

from (*) and (a) thus gives the two conditions

γ2
1
v
1
(U

1
−T

1
)=2γ 2

+(c
E
− v+)(1−c

E
v+)U , and

γ
1
(U

1
v2
1
−T

1
)=2γ

E
γ+

(
(1+c

E

2) v+−2c
E

)
(c

E
cos α −v

1
γz)U,

which suffices for determination on WY of v
1

and T
1

provided the

latter is given as a function of U
1

by some equation of state.

A prototypical example is provided by warm string model for thermal

distribution of wiggles with temperature Θ and entropy density s on

an underlying Nambu-Goto model with Kibble mass m (=
√

~“‘µ”)

meaning that T = U = m
2/~ , for which macroscopic averaging

gives

~T
m 2

=
m

2

~U = c
E
=

√
1− 2πΘ2

3 m 2
=

(
1+

3~
2s2

2π m 2

)−1/2

. (88)
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In the ultrarelativistic Nambu-Goto limit, U−T → 0 , c
E
→ 1 ,

γ
E

= (1 − c
E

2)−1/2 → ∞ , there is no current and remaining Y

junction condition is (a), which reduces to T
1

= 2 cos θ T (as for

ordinary static equilibrium) while preceding formula simply gives

cos θ = (cos α − v
1
γz)/(γz − v

1
cos α) . We thus recover the

Copeland-Kibble-Steer formula for speed of Y junction along x axis :

v
1

=
2T cos α − T

1
γz

2T γz − T
1
cos α

. (89)

In generic elastic case, T
1

is not fixed, but depends on internal state of

connecting string, WY. This will be determined by 2 more equations, (b)

and (c). That would be OK for static equilibrium with an adjustible

angle, but it over-determines the case of a dynamic collision with α
given in advance. So (as in an ordinary shock) treatment of such a

collison will generically require use of a non-conservative model !
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As 2-dim analogue of ordinary perfect fluid, non-conservative string

models have energy density U depending, not just on conserved

number density ν , but also on another number density s representing

entropy, subject to γ
1
v
1
s
1
+ 2 γ v s ≥ 0 . Thus (generalising warm

string limit with ν = 0 ) the generic variation, dU = µ dν + Θ ds,

specifies chemical potential µ (i.e. effective mass per particle) and a

thermal potential Θ (i.e temperature) on the string, whose tension will

be T = U − µν −Θs, while enthalpy per particle in (b) will then be

h = µ + Θs/ν . The Y junction condition is given, for ι = 2, by

(T
1
−ι cos θ T )

(
h

1

ν
1

+
h

ιν

)
=(h2−h 2

1
)
ιν h

1
−cos θ ν

1
h

ιν h
1
−ν

1
h

. (90)

(Taub shock condition in unbent string given by ι = 1 with θ = 0. )

91



'

&

$

%
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5 Dynamics and vorton equilibrium

states of elastic string loops
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1. Kinematics of thin string or brane

Classical p-brane model qualifies as ‘thin’ if support confined near

timelike worldsheet of dim p+1, coords σi , i= 0,1, ... p, with p=1 in

case of string.

In n dim background, with coords xµ , µ = 0, 1, ...n − 1 , metric

gµν , the brane embedding induces worldsheet metric ηij = gµνx
µ
,ix

ν
,j,

whose contravariant inverse induces (first) fundamental tensor

ηµν = ηijxµ
,ix

ν
,j giving tangential projection tensor ην

µ = gν
µ −⊥ν

µ

and tangential deriv operator ∇µ = η ν
µ∇ν .

Hence construct second fundamental tensor Kµν
ρ = η σ

ν ∇µη
ρ
σ , with

symmetry K [µν]
ρ = 0 as condition for integrability,

and projection properties ⊥σ
µKσν

ρ = 0 = Kµν
ση ρ

σ .
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2. Dynamics of thin string or brane

Brane governed by worldsheet action I =
∫
L
√−η dp+1σ will have

surface stress energy tensor given by T µν = 2 ∂L/∂gµν + Lηµν .

Evolution of worldsheet subject to external surface force density fµ

given by universally applicable dynamical equation T µνKµν
ρ = ⊥ρ

σf
σ .

In generic string case, ∃ orthonormal timelike and spacelike eigenvectors

uµ = xµ
,iu

i , ũµ = xµ
,iũ

i , ũi = εijuj associated with energy

density U and string tension T such that ηµν = −uµuν + ũµũν

and T µν = Uuµuν − T ũµũν .

In particular, a Nambu Goto (internally isotropic) string has

U = T = m2 for some fixed mass m , so in terms of worldsheet

curvature vector Kρ = Kν
ν
ρ its dynamical equation will just be

Kρ = m−2⊥ρ
σf

σ .
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3. Free motion of elastic string models

Witten’s conduction mechanism provides string Lagrangian L
depending only on scalar w = γijϕ,iϕ,j , providing adjoint

Λ = L + wκ with κ = −2 dL/dw , in terms of which

transverse (wiggle) and longit (sound) propagation speeds are

respectively v =
√

T /U and v
L

=
√

−dT /dU ,

where T = −L and U = −Λ when w < 0 ,

while T = −Λ and U = −L when w > 0 .

In all cases phase gradient proportional to surface current, cµ = xµ
,ic

i ,

ci = κγijϕ,j = −∂L∂ϕ,i , that is conserved, (
√−γ ci),i = 0 ,

when no ext force, so that T µνKµν
ρ = 0 with

T µν = 2κ−1cµcν + Lηµν .
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4. Free motion of circular elastic string loops

Circular loop invariant under action of axisymmetry generating Killing

vector ̺µ∂/∂xµ = ∂/∂φ has conserved phase winding number

N = ̺ν∇νϕ and charge number C = 2π̺µEµνc
ν , with

Eµν = 2u[µũν] , giving relation w̺2 = N2 − (C/2πκ)2 between

radius ̺ =
√

̺ν̺ν and w , whose sign is determined by ratio

b = 2πκ0N/C . Product is angular momentum J = NC = ̺νΠν,

where Πµ = 2π̺νEνρT
ρµ . Will also have conserved mass

M = −kνΠν in stationary background with Killing vector

kµ∂/∂xµ = ∂/∂t . Proper time variation of ˙̺ then given (in flat

background) by M 2 ˙̺2 = M 2 − Υ 2 with field Υ given implicitly via

w as function of ̺ by Υ = C2/2πκ̺ − 2πL̺ .

97



'

&

$

%

5. Logarithmic equation of state for cosmic string

Linear action formula, L = −m2(1+δ 2
∗ w) proposed for weak

current by E.Witten, but no good – since would give subsonic v2 < v 2
L

, contrary to effect of Witten’s conduction mechanism as calculated by

P. Peter. More realistic supersonic wiggle propagation v2 > v 2
L

from

logarithmic formula

L = −m2− 1
2m

2
⋆ ln {1+δ 2

⋆ w} ⇒ κ = m 2
⋆ δ 2

⋆ /(1+δ 2
⋆ w) ,

valid over finite range, exp{−2m2/m2
∗} < 1+δ 2

⋆ w < 2 . Radial

dependence in circular case given explicitly by

1/κ = 2(πm∗/rC)2(−̺2+
√

̺4+(C/πm2
∗)

2(̺2/δ 2
⋆ +N2) .

For ratio |b| in “safe” range, exp{−2m2/m2
∗} < |b| < 2 ,

(including “chiral” value |b| = 1 ) the ring can oscillate with

unbounded energy M .
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Fig. 1 – Plot of effective potential Υ against ̺ with various values of

ratio α = m2/m 2

⋆ for |b| = 2πκ0|N/C| in “safe” range not too far from

chiral value |b| = 1. [hep-ph/9609401]
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Fig. 2 – Plot of effective potential Υ against ̺ with various values of ratio

α = m2/m 2

⋆ for |b| = 2πκ0|N/C| outside “safe” range, where oscillation

possible only for low values of energy M .
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Fig. 3 – Plot of effective potential Υ against ̺ with various values of

ratio α = m2/m 2

⋆ for |b| = 2πκ0|N/C| far outside “safe” range, where

no equilibrium nor oscillation is possible.
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6. Stationary string states in flat background

World sheet tangent to unit static Killing vector satisfying ∇µk
ν = 0 ,

with orthog unit spacelike tangent vector eµ satisfying kν∇νe
µ = 0 ,

giving first fundamental tensor ηµν = −kµkν + eµeν and second

fundamental tensor Kµν
ρ = eµeνK

ρ with curvature vector

Kµ = eν∇νe
µ . Flow velocity v of timelike eigenvector,

T µ
νu

ν = −Uuν, specified by expression

uµ = (1−v2)−1/2(kµ+v eµ) .

Free dynamical equation reduces to (U − v2T )Kρ = 0 .

Straight solution, Kρ = 0 , possible for arbitrary v , but circular (or

more general) curved configuration must have (generically uniform)

wiggle propagation speed, v2 = T /U .
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7. Stability criterion for circular vorton states

Stability depends just on velocities v and v
L

, always holds if subsonic

v2 ≤ v 2
L

. Monopole n = 0 and dipole n = 1 modes always stable,

but instability may occur for higher modes, n ≥ 2 for which, in state

with radius a , eigenfrequency ω given for x = aω/v
+
n , with

v+ = 2v/(1 + v2) , by cubic : x3 + b2x
2 + b1x + b0 = 0 , in which

b2 = Γ − 2 − ξ , b1 = −2Γ + (1 + ξ)
(
1 − n−2

)
,

b0 = Γ
(
1 − n−2

)
, where ξ = Γ (1 − v 2

+
) ,

Γ = v−2
+ (v 2

L
− v2)/(1 − v 2

L
v2) . Stability criterion ∆ ≥ 0 , for

roots all real, given by

∆ = b 2
2 b 2

1 + 18b2b1b0 − 4b 3
1 − 4b 3

2 b0 − 27b 2
0 . Relativistic limit

ξ→ 0 gives ∆→ 4n−2(Γ +1+n−1)2(Γ +1−n−1)2, which is

strictly positive almost always.
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Fig. 4 – Zones of macroscopic instability of circular vorton states, as

obtained in 1994 by X. Martin on plot of squared rotation (and wiggle)

speed, v2, against squared “sonic” speed v 2

L
.
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Références

[1] “Dynamic Instability criterion for Circular String Loops”, B. Carter

& X. Martin, Ann. Phys. 227 (1993) 151-171. [hep-th/0306111]

[2] X. Martin, “Zones of dynamical instability for rotating string

loops”, X. Martin, Phys. Rev. D50 (1994) 7479-7492.

[3] “Avoidance of collapse by circular current-carrying cosmic string

loops”, B. Carter, P. Peter & A. Gangui, Phys. Rev. D55 (1997)

4647-4662. [hep-ph/9609401].

105


