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/1.1 The first fundamental tensor \

The development of geometrical intuition and of computationally
efficient methods for use in string and membrane theory has been
hampered by a tradition of publishing results in untidy, highly gauge
dependent, notation (one of the causes being the undue influence still
exercised by Eisenhart’s obsolete treatise “Riemannian Geometry” [1]).
For the intermediate steps in particular calculations it is of course
frequently useful and often indispensible to introduce specifically adapted

auxiliary structures, such as curvilinear worldsheet coordinates o’

(2 =0, ..., d- 1) and the associated bitensorial derivatives, namely
L4
o= 9 (1)
) 80-7,
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It is also frequently useful to introduce (adapted) orthonormal frame
vectors, namely an internal subset of vectors ¢, " (4 =0, ..., d-1)
tangential to the worldsheet and an external subset of vectors A, #

(x =1, .., n=d) orthogonal to the worldsheet, as characterised by

[/AM[/B,U — 77AB Y LAM)\X,U — O ? )\XM)\Y,U — 5XY ) (2)

where 1, . is a fixed d-dimensional Minkowski metric and the Kronecker

matrix ¢, is a fixed (n—d)-dimensional Cartesion metric, but even in

Y
the most recent literature there are still many examples of insufficient
effort to sort out the ensuing clutter of indices of different kinds (Greek
or Latin, early or late, small or capital) by grouping the various

contributions into simple tensorially covariant combinations.
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Another inconvenient feature of many publications is that results have
been left in a form that depends on some particular gauge choice (such
as the conformal gauge for internal string coordinates) which obscures
the relationship with other results concerning the same system but in a

different gauge.

The strategy adopted here [2] aims at minimising such problems (they
can never be entirely eliminated) by working as far as possible with a
single kind of tensor index, which must of course be the one that is most
fundamental, namely that of the n-dimensional coordinates, x* , on the

background spacetime with metric g, .
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KI'hus, to avoid dependence on the internal frame index 4 (which is \
lowered and raised by contraction with the fixed d-dimensional

Minkowski metric 77, . and its inverse 1*? ) and on the external frame
index x (which is lowered and raised by contraction with the fixed
(n-d)-dimensional Cartesian metric 0., and its inverse 0¥ ), the
separate internal frame vectors ¢, and external frame vectors )\X“

will as far as possible be eliminated in favour of the frame gauge

independent combinations

Wy =ut, = AN (3)

14

The former, 17¥, , is what will be called the (first) fundamental tensor
of the metric, which acts as the (rank d) operator of tangential

projection onto the world sheet, while the latter, Jﬁy , is the (rank n—d)

Qperator of projection orthogonal to the world sheet. /
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The same principle applies to the avoidance of unnecessary involvement
of the internal coordinate indices which are lowered and raised by

contraction with the induced metric on the worldsheet as given by

Nij = g,uux'u,ixyjj 7 (4)

and with its contravariant inverse 7717 . After being cast (by index
raising if necessary) into its contravariant form, any internal coordinate
tensor can be directly projected onto a corresponding background tensor

in the manner exemplified by the intrinsic metric itself, which gives

L
0

N /
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KI'he formula (5) provides an alternative (more direct) prescription for t}b
fundamental tensor that was previously introduced via the use of the
internal frame in (3). This approach also provides a direct prescription
for the complementary orthogonal projector that was introduced via an

external frame in (3) but is also obtainable immediately from (5) as

1, = g'uy - nﬂy y (6)

v

As well as having the separate operator properties

nn", =", e, =1, (7)

vV

the tensors defined by (5) and (6) will evidently be related by

', 12, =0=1n",. (8)
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1.2 The inner and outer curvature tensors

In so far as we are concerned with tensor fields such as the frame vectors
whose support is confined to the d-dimensional world sheet, the effect of
Riemannian covariant differentation VM along an arbitrary directions on
the background spacetime will not be well defined, only the

corresponding tangentially projected differentiation operation

def
vﬂ — nyu v (9)

being meaningful for them, as for instance in the case of a scalar field @
for which the tangentially projected gradient is given in terms of internal
coordinate differentiation simply by VF¢ = n"at; ¢ j; .
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An irreducible basis for the various possible covariant derivatives of the
frame vectors consists of the internal rotation pseudo-tensor pﬂyp and

the external rotation (or “twist”) pseudo-tensor w * as given by

,u

v o__ .V A o__ %
Pu o="N0ot" pVul," = —Ppup

w,”, = L X, VA 7= —w,”, (10)

together with their mized analogue /< ,,,” which is obtainable in a pair

of equivalent alternative forms given by

K =10 14V, 1," = =% A\ VX, . (11)
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The reason for qualifying the fields (10) as “pseudo” tensors is that
although they are tensorial in the ordinary sense with respect to changes
of the background coordinates x* they are not geometrically well defined
just by the geometry of the world sheet but are gauge dependent in the
sense of being functions of the choice of the internal and external frames
L, and A #. The gauge dependence of p”, and w ” means that both
of them can be set to zero at any chosen point on the worldsheet by
choice of the relevant frames in its vicinity. However the condition for it
to be possible to set these pseudo-tensors to zero throughout an open
neigbourhood is the vanishing of the curvatures of the corresponding
frame bundles as characterised with respect to the respective invariance
subgroups SO(1,d-1) and SO(n—d) into which the full Lorentz
invariance group SO(1,n—1) is broken by the specification of the

d-dimensional world sheet orientation.

N ] /




/The existence of a gauge in which puyp vanishes locally depends on the\
vanishing of the inner curvature of Riemannian type, that is obtainable
(by a calculation of the type originally developed by Cartan that was

made familiar to physicists by Yang Mills theory) as [3]

RK)\MV — QnﬂanTunﬂ[Av&] IOWUT + 2/0[/<;WT/0)\]7TV . (12)

The analogue for the “twist” tensor w,” the outer curvature of less

L4
familiar type that is given [3] by

QKAMV — Qﬂaf,u n”[Avﬁ]wwi + QZE[RIMZE}\]WV : (13)

The frame gauge invariance of the expressions (12) and (13) — whereby
R.\M, and (2.,\", are unambiguously well defined as tensors in the
strictest sense of the word — is not obvious from the foregoing formulae,

Qut will be made manifest in the alternative expressions given below. /




/1.3 The second fundamental tensor \

Another, even more important, gauge invariance property that is not
obvious from the traditional approach — as recapitulated above — is that
of the entity /< ,,,,” defined by the mixed analogue (11) of (10), which
(unlike pﬂyp and wuyp, but like R\, and 2,)", )is a
geometrically well defined tensor in the strict sense. The frame gauge
independence of (11) can be seen from its agreement with the

alternative — manifestly gauge independent — definition [4]

def

K,uyp = 7 qu/m ,00 ' (14)

whereby the entity that we refer to as the second fundamental tensor
is constructed directly from the the first fundamental tensor 7#*" as

inen by (5). /




/As this second fundamental tensor, /<,,,” will play an important role h
the work that follows, it is worth lingering over its essential properties.
The expression (14) could of course be meaningfully applied not only to
the fundamental projection tensor of a d-surface, but also to any
(smooth) field of rank-d projection operators 1) ¥, as specified by a field
of arbitrarily orientated d-surface elements. What distinguishes the
integrable case — in which the elements mesh together to form a well
defined d-surface through the point under consideration — is the
Weingarten identity, whereby that the tensor defined by (14) will have
the symmetry property

K’ =0, (15)

an integrability condition that is derivable [4], [3] as a version of the
Qvell known Frobenius theorem. /




/As well as being symmetric, the tensor KWP Is obviously tangential on\

the first two indices and also orthogonal on the last :
12 Ko = K.'n,"=0. (16)

This second fundamental tensor fully determines the tangential

derivatives of the first fundamental tensor 1)#, by the formula

Villvp = 2018 ) (17)

(using round brackets to denote symmetrisation) and it can be seen to
be characterisable by the condition that the orthogonal projection of the

acceleration of any tangential unit vector field u* will be given by

' u K, =1l wh = uw"V, ut. (18)
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1.4 The extrinsic curvature vector and the

conformation tensor

It is very practical for a great many purposes to introduce the extrinsic
curvature vector IXF | defined as the trace of the second fundamental

tensor, which is automatically orthogonal to the worldsheet,

def

Kt = KV} =V, n" K" =0. (19)

v

It is useful for many specific purposes to work this out in terms of the
intrinsic metric 7);; and its determinant ‘77‘ . For the tangentially
projected gradient of a scalar field ¢ on the worldsheet, it suffices to use

the simple expression

N

Vhip =nzh p ;.

Y




/However for a tensorial field (unless one is using Minkowski coordinates\

in a flat spacetime) the gradient will also have contributions involving

the background Riemann Christoffel connection

1 Vo 1
Lp=y9 (ga(u,p) - §9up,0) : (20)
The curvature vector is thus obtained in explicit detail as
1 -~ .
K" = o ( Han%’fi),j +nala’ T, (21)

This expression is useful for specific computational purposes, but much
of the literature on cosmic string dynamics has been made unnecessarily
heavy by a tradition of working all the time with long strings of non

tensorial terms such as those on the right of (21) rather than exploiting

v Y

Core succinct tensorial expressions, such as KY = Vunw :
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As an alternative to the universally applicable tensorial approach
advocated here, there is of course another more commonly used method
of achieving succinctness in particular circumstances, which is to sacrifice

gauge covariance by using specialised kinds of coordinate system.

In particular, for the case of a string, i.e. for a 2-dimensional
worldsheet, it is standard practise to use conformal coordinates 0" and

o' so that the corresponding tangent vectors " = 33”0 and

' = z!  satisfy the restrictions hx', =0, o, + a2, =0,
which implies /||7|| = 2"’ u = —x'T, , so that (21) simply gives
|| K = o™ =" + (22" —ata?)T )7 .
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The physical specification of the extrinsic curvature vector (19) for a
timelike d-surface in a dynamic theory provides what can be taken as the
equations of extrinsic motion of the d-surface [4], [5], the simplest
possibility being the “harmonic” condition K* = 0 that is obtained (as
will be shown in the following sections) from a surface measure
variational principle such as that of the Dirac membrane model [6], or of
the Goto-Nambu string model [7] whose dynamic equations in a flat
background are therefore expressible with respect to a standard

conformal gauge in the familiar form 2”# —2# = 0,

There Is a certain analogy between the Einstein vacuum equations,
which impose the vanishing of the trace R, of the background
spacetime curvature RMPV , and the Dirac-Gotu-Nambu equations,

which impose the vanishing of the trace /¥ of the second fundamental

tensor /< y," ,

N | /




/Just as it is useful to separate out the Weyl tensor [8], i.e. the trace free\
part of the Ricci background curvature which is the only part that

remains when the Einstein vacuum equations are satisfied, so also
analogously, it is useful to separate out the the trace free part of the
second fundamental tensor, namely the extrinsic conformation tensor [3],
which is the only part that remains when equations of motion of the

Dirac - Goto - Nambu type are satisfied. Explicitly, the trace free

extrinsic conformation tensor CMV'O of a d-dimensional imbedding is
defined [3] in terms of the corresponding first and second fundamental

tensors 7, and /X0 as

def
1
Cn” = K’ = ZnwK? €O/ =0 (22)

N /
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Like the Weyl tensor W,,”, of the background metric (whose definition
is given implicitly by (27) below) this conformation tensor has the
noteworthy property of being invariant with respect to conformal
modifications of the background metric :

G eZO‘gW = K,/ K, +n,1Vo,
C,ul/p = C,pr - (23)

This formula is useful [9] for calculations of the kind undertaken by
Vilenkin [10] in a standard Robertson-Walker type cosmological
background, which can be obtained from a flat auxiliary spacetime
metric by a conformal transformation for which €% is a time dependent

Hubble expansion factor.

N /




1.5 Codazzi, Gauss, and Schouten identities

As the higher order analogue of (14) we can go on to introduce the third

fundamental tensor|4] as

def

S =1 J/ﬂ7 TyﬁavAKJTa ; (24)

which by construction is obviously symmetric between the second and
third indices and tangential on all the first three indices. In a spacetime
background that is flat (or of constant curvature as is the case for the
DeSitter universe model) this third fundamental tensor is fully symmetric

over all the first three indices by what is interpretable as the generalised
Codazzi 1dentity.
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In a background with arbitrary Riemann curvature R ,”, the

generalised Codazzi identity is expressible [3] as
:)\,uup — E()\,uu) T 377 )\77 (,ﬂ? )Rmﬁaf (25)

A script symbol /K is used here in order to distinguish the (n-
dimensional) background Riemann curvature tensor from the intrinsic
curvature tensor (12) of the (d- dimensional) worldsheet to which the
ordinary symbol /{ has already allocated. For many of the applications
that will follow it will be sufficient just to treat the background

spacetime as flat, i.e. to take RUTﬁ& =0.

N /




/For n > 2, the background curvature tensor will be decomposible (if \

present) in terms of the background Ricci tensor and its scalar trace,

RMV — RPM Vo R = RVV ; (26)

and of its trace free conformally invariant Weyl part VW, — which
can be non zero only for n > 4 — in the well known [8] form

2
| (n—1)(n—2)

In terms of the tangential projection of this background curvature, the

Ry = W' + 59" R’

corresponding internal curvature tensor (12) takes the form

Ry ['(EMQU]V] . (27)

RMV o ZKIO[MTKV]UT T Ui K/,un AVRK)\OéTn pan Ta ) (28)

which is the translation into the present scheme of what is well known

Q other schemes as the generalised Gauss identity.

/
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(trace free conformally invariant) outer curvature (13) is expressible [3]

The less well known analogue (attributable [8] to Schouten) for the

in terms of the relevant projection of the background Weyl tensor as

2, =2 C[MTP Culre T 1 K/in )\VW,M&TJ_paJ_TU . (29)

In a background that is flat or conformally flat (for which it is necessary,
and for n > 4 sufficient, that the Weyl tensor should vanish) the
vanishing of the extrinsic conformation tensor C'W'O will therefore be
sufficient (independently of the behaviour of the extrinsic curvature
vector /X ) for vanishing of the outer curvature tensor _QWPO , which
is the condition for it to be possible to construct fields of vectors A\*
orthogonal to the surface and such as to satisfy the generalised
Fermi-Walker propagation condition to the effect that EMVVAP should

vanish.
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1.6 Internal Ricci and Conformal Curvatures.

The conclusion of the preceding paragraph is an illustration of the
critically significant role of the conformation tensor C'Wp of an
imbedding when the background is conformally flat, which suggests the
interest of examining its role with respect to the inner curvature,

R, ", in this conformally flat case, for which the condition that the
background Weyl tensor should vanish is necessary — and for n > 4 also
sufficient [8] — while when the background dimension is n = 3 this
condition, namely W,.\*, = 0, will will hold in any case as an
identity. Conformal flatness is of course compatible with the most
common applications, in which the background is taken to be flat in the
strong sense, as a justifiable approximation in typical circumstances for

which the characteristic length scales of the imbedding will be small

compared with those of the background curvature.

N /
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Leaving aside the trivial (always locally conformally flat) case of a
2-dimensional background, the Gauss relation (28) reduces to

Re\F, = 77/{'077)\0)/\},00 v77'u7‘77 y T 2K[ MUK)\]
+-2 (m&“w"m"—m[f@w"n“")(?%pa z(f_l)gpa) .

The internal Ricci tensor is thus obtained in terms of the tracefree and

trace parts C)\MV and Kp of the second fundamental tensor in the
form
R,LW — W,LW — 061/,00‘ _I_ d - C,LLI/OK —|_ KUK unm
20,00, Ry + 53 (7R — S4R)
where the background Weyl contribution, if any, is given by the
expressions
W,LW — 77#077”/4, WpaT/iin — _77,LL077VK/ WpO'TKJJ—pT ;

of which the last version is obtained as a consequence of the

tracelessness of the Weyl tensor.
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The corresponding Ricci scalar for the internal geometry (whose surface
integral in the special (string) case d=2 gives the ordinary Gauss Bonnet
type invariant that was mentionned at the end of section 8) is thus
finally obtained in the form

R=W- )M+ KK, + 941 (297 R,, — L-R)
(which corrects a transcrlptlon error Whereby a factor of two was
omitted in the original version [3]) where the final Weyl contribution is
just the trace,

W= W", = inW,OOTVnVT — J—IOTW,OO'TVJ—VT 9

which can be seen to vanish identically unless both the dimension and

the codimension of the worldsheet are greater than one, i.e. unless both
d> 2 and n-d> 2.

N /




/For cases in which the imbedded surface has dimension d< 3, as must \
always be the case in an ordinary 4-dimensional space-time background,
the specification of the Ricci contribution provides all that is needed to
specify the complete inner curvature tensor. However to fully specify

R, ", in higher dimensional cases for which the imbedded surface has
dimension d> 4 it will also be necessary to take account of the

generically non zero conformal curvature term C )", that will

contribute to the total as given by the internal analogue of (27), namely

o o lp o] 2 lp . o]
R, = Cu’ + < 77 Wit (d—1)(d—2)R77 IR (30)

The rather greater algebraic effort required to work out this inner
conformal curvature contribution is rewarded by the qualitatively tidy
form of the result, which turns out to be homogeneously quadratic in the

Qonformation tensor alone. /




@ ™

The contributions of the trace vector /* and of the background Ricci
tensor /R, are again (as in (29)) found to miraculously cancel out
altogether, leaving

Cal” =2CH" Cx" — 75 ( CP¥ o1 Cxp” + n[%[MW)\]V])

@@’ ( Cpo' CP7— W) TN Wpe o) 71

We can thus draw the memorable conclusion that in a conformally flat
background the vanishing of the conformation tensor C*¥, is a sufficient
condition not only for (local) outer flatness but also for (local) internal
conformal flatness, at least for an imbedded surface with dimension

d> 4. With a little more work[3] it can be shown that this conclusion
also holds for d=3, while it is trivial for the case of a string worldheet
d=2, which is always (locally) conformally flat.

N Y,




/1.7 Special case of string worldsheet \

The following work will deal mainly with the case d=2 of a string, for
which an orthonormal tangent frame will consist just of a timelike
vector, Lo, and a spacelike vector, 11" . Their exterior product vector

Is the frame independent antisymmetric unit surface element tensor

e = 2LO[ML1V] - 2( ‘77‘) o [,OZCVL ’ (31)
whose tangential gradient satisfies
VEW = —2K, lnevlr. (32)

This is the special d=2 case of formula (B9) in which a sign adjustment
factor (—1)4~! was omitted in the original analysis[3] (of which another
kmisprint was omission in the first term of formula (10.4) of the factor 2)/




4 R

In this d=2 case the inner rotation pseudo tensor (10) is determined just

by a corresponding rotation covector p,, according to the specification
o, =5 E"px, pr=pyEY (33)
This can be used to see from (12) that the Ricci scalar,
R=FR, R = Rpy (34)

of the 2-dimensional worldsheet will have the well known property of
being a pure surface divergence, albeit of a frame gauge dependent
quantity :

R=V,(EMp,) . (35)

N /




41 the specially important case of a string in ordinary 4-dimensional \
spacetime, i.e. when we have not only d=2 but also n =4, the
antisymmetric background measure tensor eM¥P can be used to
determine a scalar (or more strictly, since its sign is orientation

dependent, a pseudo scalar) magnitude (7 for the outer curvature

tensor (13) (despite the fact that its traces are identically zero)

according to the specification
Q2 =5 Dyup ™’ 36
— 5 duwp € - (36)

Under these circumstances one can also define a “twist” covector @, ,
that is the outer analogue of p,, , according to the specification

1 A o
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/Using (37) it can be deduced from (13) that the outer curvature \
(pseudo) scalar {2 of a string worldsheet in 4-dimensions has a
divergence property of the same kind as that of its more widely known

Ricci analogue (35), the corresponding formula being given by

2=V, (E"w@,) . (38)

It is to be remarked that for a compact spacelike 2-surface the integral
of (32) gives the well known Gauss Bonnet invariant, but that the
timelike string worldsheets under consideration here will not be
characterised by any such global invariant since they will not be compact
(being open in the time direction even for a loop that is closed in the
spacial sense). The outer analogue of the Gauss Bonnet invariant that
arises from (36) for a spacelike 2-surface has been discussed by Penrose
and Rindler [11] but again there is no corresponding global invariant in

kthe necessarily non-compact timelike case of a string worldsheet. /
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Laws of motion for a regular pure

brane complex

3-brane
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(wind)

1-brane
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1-brane
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The term p-brane has come [12], [13] to mean a dynamic system

.1 Definition of brane complex

localised on a timelike support surface of dimension d=p+1 , imbedded
in a spacetime background of dimension n > p . Thus a zero - brane
means what is commonly referred to as a “point particle”, and a 1-brane
means what is commonly referred to as a “string”, while a 2-brane
means what is commonly called a “membrane” (whence the generic

term “brane”).

At the upper extreme, the “improper” case of an ( n-1)-brane is what is
commonly referred to as a “medium” (as exemplified by a simple fluid).

The codimension-1 (hypersurface supported) case of an ( n-2)-brane (as
exemplified by a cosmological domain wall) is what may be referred to as

a “hypermembrane”, while the codimension-2 case of an ( n-3)-brane is

that may analogously be referred to as a “hyperstring”. /




/A set of branes of diverse dimensions will constitute a “geometrically \
regular” brane complex if the support surface of each (d-1)-brane

member is a smoothly imbedded d-dimensional timelike submanifold of
which the boundary, if any, is a disjoint union of support surfaces of lower
dimensional members of the set. For the complex to qualify as regular in
the strong dynamic sense, it is also required that a p-brane member can
act directly only on an (p-1)-brane member on its boundary or on a

(p 4+ 1)-brane member on whose boundary it is itself located, though it

may be passively influenced by higher dimensional background fields.

Direct mutual interaction between branes with dimension differing by 2
or more will usually lead to divergences, symptomising the breakdown of
a strict — meaning thin limit — brane description. To cure that properly, a
more elaborate treatment — allowing for finite thickness — would be
needed, but it may suffice to use a thin limit approximation wherby the

inergence Is absorbed in a renormalisation. /




1-brane

3-brane
innnnnnnnnl

(wind)

1-brane

2-brane
( sail )

0-brane
1-brane

0-brane

Nautical archetype of a regular brane complex in which a 3-brane (the
wind) acts (by pressure discontinuity) on a 2-brane (the sail) hemmed by
three 1-branes (bolt ropes) terminating on 0-branes (shackles) that are

\held in place by three more (free) 1-branes (external stay/sheet ropes)./




41 the case of a brane complex, the total action / will be given as a \
sum of contributions from the various (d-1)-branes of the complex, of
which each has its own Lagrangian d-surface density scalar @], say.

Each supporting d-surface will be specified by a mapping 0 +— :U{O}
giving the local background coordinates " (1 = 0, .... , n-1) as
functions of local internal coordinates o (2 =0,..,d1). The
corresponding d-dimensional surface metric tensor (Vr);; induced as the
pull back of the n-dimensional background spacetime metric g, ,
determines the surface measure, (d)dg, in terms of which the total

action will be expressible as

1=y [oB e, B = o, (3
d
N | Y




/For purposes such as the calculation of radiation, it may be useful to \
replace the confined (d-surface supported) but locally regular

Lagrangian scalar fields @, by corresponding unconfined, so no longer
regular but distributional fields @], , so as to allow the total action

(39) to be represented as a single background spacetime integral,
T /dS SSoi, dS=y/fglldz. (40
d

This requires the distributional action ()L, for each (d-1)-brane of the
complex to be given in terms of the regular d-surface density scalar (L

by the prescription expressible in Dirac notation as
oL = gl 2 [0S Lo - a(oY.

N ] /
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2.2 Current, vorticity, and stress-energy tensor

As well as on its own internal (d-1)-brane surface fields and their
derivatives, and those of any attached d-brane, each contribution (@1
will also depend (passively) on the spacetime metric g, and perhaps

other background fields, such as a Maxwellian gauge potential A/L , ora

generalised Kalb-Ramond gauge field BLT...VT = B[[;]l...u] . In the

unpolarised (fine) brane limit considered here the action will not depend

on the background field derivatives. These give corresponding fields

F,uy — ZV[/LAV] ) N[r+1] — (T + 1)V[MB[;]1V7’]7

UV ... Vy
which are invariant under gauge changes

[7] [7]
Aﬂ HAXI_l_v/lOé? BV1V2...VT — BV1V2....VT—|_ T!V[V1XV2---VT]7

and are automatically closed :
[r+1]
Vil =0, VipNuyy ) = 0.

N u /




/Subject to the internal dynamic equations of motion given by the \
variational principle stipulating preservation of the action by variations of

the independent field variables, the effect of arbitrary infinitesimal

“Lagrangian” variations §Au QBZL : I@W of the background fields will

be to induce a corresponding variation of the simple form

07 =300 JdS (] A+ Tarr"0B,, L, ++ T )
from which, for each (d—1)-brane, one can read out the
electromagnetic surface current vector <d)7” , the surface flux
(generalised vorticity) r-vector <d>W[Z]1"'VT — (d)ﬁ[r[]Vl---Vr], and, since
I(JS((OUdg) = & @ (0, @dS , the surface stress momentum energy
tensor

_ _ D], _
(@Y — (@VE — 9 (@, @yt (42)
aguu

N /




/2.3 Conservation of current and vorticity

: [7]
Arbitrary gauge changes gA,/ = V, &, and BV1V2... = T!V[V1XV2...]7
with dg,,, = 0, can only leave the action invariant

Zd fd(d)g ((dﬁyvu@—l— (d)W[Z]WQ'”VleVQ“) =0, if the current

@5H and vorticity flux @w”1¥2  are purely d-surface tangential -

T

their contractions with the rank (n-d) orthogonal projector

@, =df,— @n*, must vanish, (@LF @57 =0, @K @yt =0.

Thus decomposing the full gradient operator VM into tangential and
orthogonally projected parts (VV,, = ¥ V), and (" V, , one
sees that the gauge invariance condition for the action takes the form

> @dS (@ OV, 05 X, OV, ) =

r]

Soaf <d>d5(d>vy((d>jVa_|_ (d)w[gw... XVQ...) |
Q which integrands on the right are pure d-surface divergences.

~
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For any d-dimensional support surface ()S, Green's theorem gives

/ WS WY, @ ¥ = 7{ @-1dS @), @ 5V (43)

taking the integral on the right over the boundary (d-1)-surface of
OWS of @S, where @), is the (uniquely defined) outward directed
unit tangent vector on the d-surface at its (d-1)-dimensional boundary.

The gauge invariance condition on the action can thereby be reduced to

Zp f ®dS {Oz(mﬁy ey — 37 dept [ DA, <d>_jV)
—|—XV2. ((p)\/ (P) w[ Zd p+1( ))\ (d)_[V]VQ )} — ()

where, for any p-dimensionally supported (p-1)-brane, the summation

“over d=p+1" is to be understood as consisting of a contribution from

each (p+1)-dimensionally supported p-brane attached to it.

N ] /




KI'he Maxwell gauge invariance condition (independence of @ ) is thus \

seen to be equivalent to the electric current conservation condition
0\, PIjH = Z @), @ (44)
d=p+1
which means that the source of charge injection into any particular
(p-1)-brane is the sum of the currents flowing in from the p-branes to
which it is attached. The generalised Kalb-Ramond gauge invariance

condition (independence of X, ., ) can similarly be seen to be

equivalent to the analogous (generalised vorticity) flux conservation

condition

(p)\/ (pyyy HP2---Vr — g (d))\ GV "WQ b (45)
[7]

N , /




/2.4 Force and the stress balance equation \

The condition of being “Lagrangian” means that ES IS comoving as
needed to be meaningful for fields with support confined to a particular
brane. However for background fields one can also define an “Eulerian”
variation, é , with respect to some appropriately fixed reference system,
in which the infinitesimal displacement of the brane complex is specified

by a vector field £# . The difference will be given by

where the &£ s the Lie differentiation operator, which will be given

for the relevant background flelds by f;é:A/L PN AM—I—ApVpr
LB —¢rV,BN 4 rBY, Ve and £ =2V,

N

/




41 a fixed Eulerian background, the background fields will have \
Lagrangian variations given just by their Lie derivatives with respect to

the displacement £# . Subject to the internal field equations, the action
variation 0/ due to the displacement of the branes will therefor just be

o JodS (7 EEA,+ L@ EEBY, + § 0T ¢£g,,).

The postulate that this vanishes for any £ entails the further d-surface
tangentiality restriction (W# ([P = () and the requirement

L i -
Z / 4ds gp o " T N [ H].. Wy

A = i 1 =
__(d SUY d d) M __ (d) GO
(DN, @ P A, DV, @5 = 1)!Bp,/m V., w; )

= = 1 ES R
+(d)vﬂ (fp(AP (d)]'u—l_ (T’ - 1)|BPI/ @ w[/:] + (d)T’uP))} =0 y (47)
in which the final contribution is a pure surface divergence that can be

kdealt with using Green's theorem as before. /




Kl'he conclusion is that invariance of the action under arbitrary \

displacements £#  of the brane complex entails the dynamic equations

(Mthwﬁpﬂp;::(thp (48)

in which total force density, (P>fp = (P>fp + (P>fp , includes

Faraday-Lorenz and Joukowski-Magnus contributions from the

background, as given by <P>fp = F,, (p)jﬂ + 2 ]\IT+1 (P MY

M
On each (p-1)-brane, the contact force exerted by attached p-branes is

of , = Z @O\, @TH (49)
d=p+1

in which it is to be recalled that, on the (p+l)-dimensional support
surface of each attached p-brane, (d))‘u Is the unit vector that is

kdirected normally towards the bounding (p-1)-brane. /




1-brane

3-brane
innnnnnnnnl

(wind)

1-brane

2-brane
( sail )

0-brane
1-brane

0-brane

Nautical archetype of a regular brane complex in which a 3-brane (the
wind) acts (by pressure discontinuity) on a 2-brane (the sail) hemmed by
three 1-branes (bolt ropes) terminating on 0-branes (shackles) that are

\held in place by three more (free) 1-branes (external stay/sheet ropes)./




/2.5 The equation of extrinsic motion

The tangential force balance equations will hold as identities when the
internal field equations are satisfied (because a surface tangential
displacement has no effect). The non-redundent information governing
the extrinsic motion of a (p —1)-brane will be given just by the
orthogonal part. Integrating by parts, as the surface gradient of the
rank-(n — p) orthogonal projector ®I£  will be given in terms of the
second fundamental tensor (P)KWP of the p-surface by

v
are finally obtained in the form

N

®V,, ® = — <P)KWp — M/ P . the extrinsic equations of motion

(Y] Y () K’ = @l off (50)

~
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3 Canonical Symplectic Structure

Abstract The covariant canonical variational procedure leading to the
construction of a conserved bilinear symplectic current was originally
developped in the context of field theory by Witten, Zuckerman, and
others [1, 2, 3, 4, 5, 6, 7]. The following notes describe the
generalisation of this procedure to brane mechanics in the manner
initiated by Cartas-Fuentevilla [8, 9] and developed in collaboration with
Dani Steer [10]. After a general presentation, including a review of the
relationships between the various (Lagrangian, Eulerian and other)
relevant kinds of variation, the procedure is illustrated by application to

a particular category including the case of branes of purely elastic type.

N /




/3.1 Canonical formalism for Branes

Consider a generic conservative p-brane model whose mechanical

evolution is governed by an action integral of the form
1 = /ﬁdeJ,

over a supporting worldsheet with internal co-ordinates o
(2=20,1,...p), and induced metric Nij = ngfém?j in a
background with coordinates *, (u=10,1,...n — 1),

(n > p+1) and (flat or curved) space-time metric Juv -
The relevant Lagrangian scalar density is given by £ = H77H1/2L,

where L, is scalar function of a set of field components ¢*
— including background coords — and of their surface deriatives,

b= 0:q» = dg~ /Do’ .

\J
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The relevant field variables g can be of internal or external kind, the
most obvious example of the latter kind being the background

coordinates " themselves.

The generic action variation, 0L = L, 0g* + pA5q i
specifies partial derivative components ,CA and and corresponding
generalised momentum components pAi . The variation principle

characterises dynamically admissible “on shell” configurations by the

vanishing of the Eulerian derivative

< . A_pAi,i' (52)

N /
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In terms of this Eulerian derivative, the generic Lagrangian variation will

have the form

5L Z.
0L = @&]A + (pAéqA)’Z.. (53)
There will be a corresponding pseudo-Hamiltonian scalar density
H = qu},\i — L, (54)
for which
OH = qf‘ﬁpj — L, 0g*. (55)

(The covariance of such a pseudo-Hamiltonian distingushes it
from the ordinary kind of Hamiltonian, which depends on the

introduction of some preferred time foliation.)

N | /
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For an on-shell configuration, i.e. when the dynamical equations

0L
—— = 56
5(]A 07 ( )

are satisfied, the Lagrangian variation will reduce to a pure surface

divergence,
0L = (p0g") ;. (57)

and the correponding on-shell pseudo-Hamiltonian variation will take

the form

OH = ¢*0p, — p. 0q" . (58)

N _ /
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3.2 Symplectic structure

The generic first order variation of the Lagrangian will be given by

0L -
0L = @5QA + e g - (59)
in terms of the generalised Liouville 1-form (on the configuration space
cotangent bundle) defined by V' = p og*
Now consider a pair of successive independent variations 5, 0 ., which

will give a second order variation of the form

5L 5L
)dq +oc08ar+ (Bni8a* +p1080) . (60)

N . /
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Thus using the commutation relation 00 = 00 one gets
p 5£ 5£ \ AN
3 )da = 85— )da =&,
0qA 0qA ’
where the symplectic 2-form (on the configuration space cotangent
bundle) is defined by w' = (5pi5qA — 5pi(5qA
For an on-shell perturbation we thus obtain

0L

— =0 — 5£:19i7@',
0gA

while for a pair of on-shell perturbations we obtain

5((?;) 5((?;) 0 =  &,=0.

N

~

(61)
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The foregoing surface current conservation law is expressible in

shorthand as

@' =0, (64)

in which the closed (since manifestly exact) symplectic 2-form (59) is

specified in concise wedge product notation as
w' =0 AV =0p, Nogh. (65)

Some authors prefer to use an even more concise notation system in
which it is not just the relevant distinguishing (in our case acute and
grave accent) indices that are omitted but even the wedge symbol A
that indicates the antisymmetrised product relation. However such an

extreme level of abbreviation is dangerous [8] in contexts in which

symmetric products are also involved.

N /
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3.3 Translation into strictly tensorial form.

To avoid the gauge dependence involved in the use of auxiliary
structures such as local frames and internal surface coordinates, by
working [11] just with quantities that are strictly tensorial with respect
to the background space, one needs to replace the surface current
densities whose components ¥ and @ depend on the choice of the
internal coordinates Oi, by vectorial quantities with strictly tensorial

background coordinate components given by

OV = |nl|7" a9, Q" =|In)|7?2%" . anc

N
with strictly divergences given by

V, 0" = H77H_1/279i i V= H77H_1/2wi 0

N /
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Gw terms of the surface projected covariant differentiation

operator defined in terms of the fundamental tensor

L,Lz'x?j by V, = U”VVN , one thus obtains a

Liouville current conservation law of the form

Nt = 77@']’ T

V,0" =0 (66)

for any symmetry generating perturbation, i.e. for any
infinitesimal variation 0¢* such that 0L = 0.

Similarly a symplectic current conservation law of the form

YV, =0 (67)

will hold for any pair of perturbations that are on-shell, i.e. such that

Q(éﬁ/(SQA) —0.

/
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3.4 Covariant variation formulae

If the field ¢* is defined over the background — not just confined to
brane worldsheet with internal coordinates o' — then in terms of the

relevant displacement vector, £# = o0x" , with respect to a given (e.g.

Minkowski type) system of background coordinates in terms of which

0,q* = MZ-@MQA , the simple worldsheet based field component

variation 0¢* will be given by

0g* = dg* + £10,q" . (68)

where E&]A Is the relevant Eulerian variation, as defined with respect to

the background system.

N | /
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When one is dealing with a background field that is not simply a scalar

but of a more general tensorial nature, it will commonly be desirable to

go on to convert the Eulerian variation formula é =0 —¢-0 into

terms of covariant derivation as given by g -V = g 0+ {g I'}

where {f . F} IS a purely algebraic operator involving contractions with

the 2-index quantity (f e, =&rT ,'y, as exemplified, for a vectorial
(e g. Killing) field k* , or a covectorial (e.g. Maxwellian) form A, , by

(€Tt = €T, and {€-T}A, = —(€-T), A,

L

N ] /
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Instead of using the connection dependent covariant derivative, one can
work with the corresponding Lie derivative, as given by a prescription of
the form £ = & -V — {VE}, in which the operator {VE}  acts

by contractions with the displacement gradient tensor V,£/, in the

way exemplified respectively for a vector £/, or a 1-form (i.e. covector)
A, , by the formulae { VE}EH = EVV,EF ) and

{Vf}AM = —Ayvufy .|t can be seen that connection cancels out,
so that the Lie derivative will be equivalently expressible in terms just of

partial derivative components 0, as

£ =C-0— {0} (69)

N /
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Another kind of variation that is particularly important in the context of
brane mechanics — because (unlike the Eulerian, covariant, and Lie
derivatives) it is always well defined even for fields whose support is
confined to the brane worldsheet — is what is known as the

Lagrangian variation, meaning change with respect to background

coordinates that are dragged by displacement. In the case of a field that
Is not confined to the brane worldsheet, so that its Eulerian variation is
well defined, this latter kind will be related to the corresponding

Lagrangian variation by the well known Lie derivation formula

§ =0+ £ (70)

L
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Yet another possibility that may be useful is to express the Eulerian

(fixed background point) variation in the form

where parallely transported variation is defined — not just for

background field, but also for tensor confined to brane — by

§=0+{E-T}, (72)

using the operator notation introduced above. This parallel variation §

shares with the Lagrangian variation § the important property of being
well defined not just for background fields but also for fields whose

support is confined to the brane worldsheet.

N | /
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The Lagrangian variation § will always be expressible directly in terms

of the corresponding parallel variation Ié by a relation of the form

6 =9 —{VE}, (73)

in which it can be seen that connection dependence cancels out, leaving

an expression of the simple form
6 =06 —{0¢}, (74)

where the action of the algebraic operator {({95} Is exemplified for a
vector k¥ . or a covector Au . by the formulae {O& }EF = kY0, &7,

and {OE} A, = —A,0,6" .

N ] /
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In conclusion of this overview of the relationships between the various
kinds of infinitesimal variations that are commonly useful, it is to be
mentionned that in literature dealing with purely non relativistic contexts
in which it is possible (though not necessarily wise) to work exclusively
with space coordinates of strictly Cartesian (orthonormal) type, the
variations of the kind referred to here as “parallel” are generally
described as “Lagrangian” by many authors. That usage does not
necessarily lead to confusion, because for scalars the distinction does not
arise, and because such authors systematically eschew the use (and the
technical advantages) of Lagrangian variations of the fully comoving
kind (that is considered here) by working exclusively with tensor

components that are evaluated in terms only of orthonormal frames.

N /
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3.5 Evaluation via Lagrangian variations.

In typical applications, the relevant set of configuration components g*
will include a set of brane field components ©” as well as the
background coords " |, so that in terms of displacement vector

EF = 0x" the Liouville current will take the form

0¥ = |Inl| 722 (pa’ 69 + p,l §) = oY S + 7,/ ",
which the latter version replaces the original momentum components by
the corresponding background tensorial momentum variables, which are
given by 7, " = H77H_1/2 xfip&i and 7T = H77H /2 gv pM :

N /
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To obtain an analogously tensorial formula for the symplectic current
2-form, it is convenient, as a first step, to take advantage of the
symmetry property FMVIO — FpVM, of the Riemannian background
connection, which allows substitution of parallel variation

~

I@fpui = 5plf — I ”ppyifp for 5plf so as to provide an expression of

7
the form

OV = HnH_l/Qa:Z(épai N dp™ + Iéplf A f“) . (75)

/
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The next step is to evaluate the relevant momentum variations in terms

of the corresponding Lagrangian variations, using the formulae

10l =22, 6pa’ = 670" + T VV,EF (76)
and

HnH_l/Qafz Iép,uz — §7T,uy o 7T,0V /ifp + ﬂ-,uV_ng . (77)

The advantage of Lagrangian variations is their convenience for relating

the relevant intrinsic physical quantities via the appropriate equations of

state.

N /
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3.6 Application to hyperelastic case

The hyperelastic category [12] (generalising the case of an ordinary

elastic solid which includes the special case of an ordinary barotropic
perfect fluid) consists of brane models in which — with respect to a

suitably comoving internal reference system o' — there are no

independent surface fields at all — meaning that the ©® and the p,,°

are absent — and in which the only relevant background field is the
metric g,,, that is specified as a function of the external coordinates
2" . In any such case, the generic variation of the Lagrangian is
determined just by the surface stress momentum energy density tensor
TH according to the standard prescription

0L = %Hn”l/Q T 0fw , Whereby TH s specified in terms of
partial derivation of the action density with respect to the metric.

N
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In a fixed background (i.e. in the absence of any Eulerian variation of the
metric) the Lagrangian variation of the metric will be given, according to
the formula (70), by gguy = §£gw — QV(MfV) . Comparing this to
canonical prescription 0L = L, + pﬂif/ﬁi with £# = 0x" shows
that the relevant partial derivatives will be given by the (non-tensorial)
formulae £, = ||n||Y2 1" 1,7 and p,) = |[n||** T un ", .

It can thus be seen that in the hyperelastic case, the canonical

v

momentum tensor 7, © and the Liouville current O will be given just

in terms of surface stress tensor /""" by the very simple formulae

7_(_qu _ T,uy 7 @V _ Tluyg,u . (78)

N /




4 )

In order to proceed, we must consider the second order metric variation,
whereby (following Friedman and Schutz [13]) the hyper Cauchy tensor
(generalised elasticity tensor) CHYPT = EPTHY s specified [14] in terms

of Lagrangian variations by a partial derivative relation of the form
S(Inl2TH) = [lnl|V2 €776 g, (79)
The symplectic current is thereby obtained in the form
O =07 NAEH, (80)

where

0,/ =2C,"Vol? + T""V,E, (81)




~
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4 Application to string junctions and

intercommutations
Ly
X l > vV l R




KI'he prototype application is to a point particle, labelled by 0, at the \
junction between strings labelled by an index j that runs from 1 to 2 for
a V junction, or from 1 to 3 for a Y junction (or even 1 to 4 for an X
junction). The particle position 2* will have proper time derivative x*
and acceleration * = "V, 2" given, with 2”2, = 0, by
Vol gy = Fudy + ) ATy, (82)
J

In conjunction with the charge conservation law
o) 2 %
v Vo Js _Z)\j”]j ' (83)
J

where the )\J.V are outward directed string tangent vectors, subject to
orthonormality conditions )\jy)\jy =1, 2"\, =0, 2"z, = —1.

N
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and e Z

\_

1.e. when m,

junction conditions Zj )\ijjiL =0 and Zj )\jyz,y =0.

Kl'he zero-brane fundamental tensor, energy tensor, and charge vector aD
given in terms of the particle mass m_, and charge number 2z, by

nw =—xtz”, TH = matz”, j7=e z,1",
where e is a charge coupling constant, while Ku p— _770W xl .

J:“’

_'V .
- Z )\jyj, , while as a consequence we shaII have
J J

_ ° M _l/ . . . .
m,=—= Zj )\jyjzu . If no strings attached, right hand sides will
drop out, so the proper time derivatives m, and 2, must vanish,
leaving a dynamic equation of the familiar form m 2, = e z I, 2"

Our concern here is with the opposite extreme, for which the left hand
sides drop out in the absence of a substantial particle at the junction,

=0 and 2z, = 0, so that we shall be left with the

/
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For any string model the 2 dimensional worldsheet will have unit surface
bivector and (first) fundamental tensor 1, = gupgpy expressible in
terms of any orthonormal tangent diad uw”, %Y as EM = 2yl 3V

and ", = —ut u¥ + utu”. The symmetric surface stress energy

tensor will be expressible in the form
T _— 3 av)
I =p5r5". (84)

in terms of a pair of bicharacteristic vectors having the generically

timelike form 5! = /U u# & VT u* . in terms of a preferred diad

such that

TH — Y uhu? — T 5h 5" (85)

where {4 is the surface energy density and 7 the string tension.

N /




KI'he magnitudes of the bicharacteristic vectors will then be given by \
5+uﬁ+ﬂ =0 ,B7 = —(Z/{ — T) ., while their scalar product would

any case be given by 01 = T", = —(U + T) .

At the junction, for the j th string, we shall have 'u,j” = 7, (¥ — UJ)\J”)

and ﬂj” = %.()\jy — v, 3") where 7y, = (1 — UjQ)_l/Q , S0 with

v __ 0 AV 1 v - . . .
@i = ﬁji T+ @i )\j its force contribution will be

R 2 2 2 -
TNy =3 (U = THON = yju U, = T)z",  (86)
A1 A1 W (1 90) op
= P b= A0+ B B 2
At a V junction between just 2 string segments in different directions,

)\f =+ —)\g , the coefficient of the first term in (86) and thus one of its

factors, must vanish : @i — () say, so the junction worldline is itself

. . . . L4 I/ I/
bicharacteristic : £~ X ﬁﬁ :

N /
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On either side of a V junction (kink) between string segments YV and

VR the relative flow speed ¥ must satisfy the condition V2 = c:E2

where ¢ = \/T/Z/{ is the extrinsic (wiggle) propagation speed. The
force balance condition is then just that there be no jump discontinuity

In the energy transmission rate, which means

2

VUT| =0 (87)

1

If the string state depends on electric and/or other surface currents,
their conservation conditions will just be equivalent to continuity of the

&elevant variables. /




Now consider a Y junction (bifurcation) where a first string segment WY
splits into two branches YV and YU , which (for simplicity) we suppose
to be symmetric, both deviating by the same angle ! from the direction
of WY in the junction rest frame, so that )\/2‘ 4 )\g = —2cosf )\f .
Dropping the suffices 2,3 for the symmetrically related branches, the
force balance conditions will be expressible as
712?}1 (Z/{l _Tl) — _2/72?}(2/{ _T) ) (*)
Qnd V(U v? —=T,) = 2cos0~* (U =T). (a) y,




A

internally but also at at junctions, then in terms of the specific enthalpy,
h=U-—7T)/v, the energy conservation condition (*) will reduce to

/hcthere is a current V¥ = v u# of particles that are conserved not ju

T =70, (b)
by the condition Zj )\jVVjV = (0, which, for symmetric Y-junction, is
71U1V1:_2VUV' (C)

In the ordinary elastic case, for which {/ depends just on T, such a
number density I and the corresponding chemical potential or effective
mass (1 = AU/ /dv, are specifiable by In{v} = [ dU /(U — T),
with the identification (4 = /. This gives two conserved currents,

v = v ut and 17 = pu” (of which one or other will be
identifiable, in the electromagnetic case enviseaged by Witten, with the
current 2" above). The two equations (b) and (c) suffice to determine

the change in velocity and state in the elastic case, and the preceding

\equation (a) then fixes the angle 0 . /
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As in hep-th /0601153, using frame with unit vectors

ey, el e/, e’, consider symmetric collision of strings ZT and

XR with directions deviating from & direction by angles =« in ¥y

direction, and velocities = v, in 2 direction, after formation of
connecting segment WY at rest in the & direction. In terms of time ¢

and internal space coordinate 0, the unperturbed segments ZQ and UT
of the first string will thus have position given by

' =t(e; + v, el)+o(cosa el +sina el),

\with preferred internal frame given by u# = ~v,( e} + v, et). /
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elative to the preferred frame, the kink U has characteristic speed ¢,

and so Is given by 0 = ”y;l ¢, t. This gives the unit bicharacteristic :
_ M ;

B o ul =vy7.(ef+ v, el)+c.y(cosa el +sina ey).

The connecting string segment WY will have tangent vector

)\f — ’yl( e’ + v, ety) normal to the worldline of the junction Y, of

which the tangent ¥ = ’yl( e; + 1, e’;,) is also, like ’u,f, tangent

to the segment YU, in which, with

V4 =—Ty vl =77, (72— c,1,co8 ), the normal frame vector will

be \V = (’yf—l)_l/Q (74 ¥ — w/). The prefered frame vector

with speed ¢ relative to % in YU is thus

uw’ = (7 — e/ E—1) (" — v \) with velocity

v=(vy —c.)/(1 —c.vy) where v, = \/1—%:2,
which is needed for (b) and (c). Finally the angle needed for (a) is given

by cos = —X\'N\, = 7,7, (72 —1)"%(c, cosa —v,7.) . .




/Eliminating ¢, v, andits Lorenz factor ¥ = 7, V. (1— ¢, vi ), \
from (*) and (a) thus gives the two conditions
v, (U, —T,) =27} (e, — v4)(1—c, v4)U , and
T (Z/{lvl2 _Tl): 2/7]37%— ((1_|_ CEQ) ’U+_26E) (CE COs & — 172)2/{7

which suffices for determination on WY of v, and 'Tl provided the

latter is given as a function of {4, by some equation of state.

A prototypical example is provided by warm string model for thermal
distribution of wiggles with temperature © and entropy density S on
an underlying Nambu-Goto model with Kibble mass m (= +/h*u")
meaning that 7 = U = m2/h, for which macroscopic averaging

gives

WT — m2 \/ 2I7O?2 3h252\ 12

m?2 27 m?

N . /




41 the ultrarelativistic Nambu-Goto limit, U —7 — 0, ¢, — 1, \
Ve = (1 — CEQ)_l/2 — OO, there is no current and remaining Y
junction condition is (a), which reduces to 7, = 2cos 6] (as for
ordinary static equilibrium) while preceding formula simply gives
cos ) = (COS o — vlvz)/(% — U, CO0S oz) . We thus recover the

Copeland-Kibble-Steer formula for speed of Y junction along x axis :

27T cosa— T, 7,
v, = .
v 2T v, — T, cosa

In generic elastic case, Tl Is not fixed, but depends on internal state of
connecting string, WY. This will be determined by 2 more equations, (b)
and (c). That would be OK for static equilibrium with an adjustible

angle, but it over-determines the case of a dynamic collision with «

(89)

given in advance. So (as in an ordinary shock) treatment of such a

Qollison will generically require use of a non-conservative model ! /
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s 2-dim analogue of ordinary perfect fluid, non-conservative string \
models have energy density {/ depending, not just on conserved
number density I/ , but also on another number density S representing
entropy, subject to v, 0,8, +2vvs > 0. Thus (generalising warm
string limit with = 0 ) the generic variation, d{/ = pdr + © ds,
specifies chemical potential (1 (i.e. effective mass per particle) and a
thermal potential © (i.e temperature) on the string, whose tension will

be 7 = U — v — Gs, while enthalpy per particle in (b) will then be
h=pu—+ @S/V. The Y junction condition is given, for t = 2, by

h, h h,—cos O v, h
(Tl—LCOSHT)<1{ >(h2—h2) AT AR (90)

1
v, LV wh, —v h

Taub shock condition in unbent string given by ¢t = 1 with ¢ = 0.

N Y,
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5 Dynamics and vorton equilibrium

states of elastic string loops




1. Kinematics of thin string or brane I

Classical p-brane model qualifies as ‘thin’ if support confined near

timelike worldsheet of dim p+1, coords o , i= 0,1, ... p, with p=1 in
case of string.

In n dim background, with coords " , © = 0,1,..n — 1 , metric
Juv , the brane embedding induces worldsheet metric 7);; = gwxl;ajyj,

whose contravariant inverse induces (first) fundamental tensor

w, v
77,“

v = nalx¥ giving tangential projection tensor 772 — gib — J_Z
and tangential deriv operator V,, = 1/V,, .

AR

Hence construct second fundamental tensor /< ,,,,” = ngv,mg) , with
symmetry /{(,,1” = 0 as condition for integrability,
and projection properties J%Kwp =0=K,7".

N i Y




/ 2. Dynamics of thin string or brane I \

Brane governed by worldsheet action /7 = fL V=1 dPT o will have
surface stress energy tensor given by 1" = 20L/0gq,, + Ln"" .

Evolution of worldsheet subject to external surface force density [*

given by universally applicable dynamical equation TWKW'O = L’;?a .

In generic string case, 3 orthonormal timelike and spacelike eigenvectors
ut = x‘fzuz Cut = :E/jzﬂz = Eijuj associated with energy
density { and string tension 7 such that n*¥ = —utu” + utu”
and TH = Yutu? — Ta'u" .

In particular, a Nambu Goto (internally isotropic) string has

U =T = m? for some fixed mass 77 5o In terms of worldsheet

curvature vector ¥ = K¥ P its dynamical equation will just be

KP=m=21° fo
N e Y,
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‘3. Free motion of elastic string models I

Witten's conduction mechanism provides string Lagrangian L
depending only on scalar w = v”:jgpjigpjj , providing adjoint
AN =L+ wk withxk = —2 dL/dw “in terms of which
transverse (wiggle) and longit (sound) propagation speeds are
respectively v = \/T/Z/{ and v, = \/—dT/dZ/[ ,
where 7 = —[, andUd = —A\ when w < 0 ,
while 7 = —A and/ = —L when w > 0 .

W —
i€

¢ =ky"p; =—0L0p;, thatis conserved, (/—7C),; =0,
when no ext force, so that TWKW’) — () with
TH = 2k~ Yehe + L

\_

In all cases phase gradient proportional to surface current, ¢* = x

~

Y




4. Free motion of circular elastic string loops I

Circular loop invariant under action of axisymmetry generating Killing
vector Q“(?/(?:IJ“ = (9/(9¢ has conserved phase winding number

N = 0"V,¢ and charge number C' = 2w "& ,,c” | with

EM = 2ultgY) | giving relation wo® = N? — (C'/21K)? between
radius 0 = @ and W , whose sign Is determined by ratio

b = 2mro/N/C . Product is angular momentum J = NC' = ¢"I],,

where [[H = QWQVEVpTW . Will also have conserved mass

M = —k"1I, in stationary background with Killing vector
k“@/@x“ = 0/(‘% . Proper time variation of ¢ then given (in flat
background) by N/29? = % — 1% with field 1" given implicitly via
w as function of o by 1" = C*/2wko — 27 Lo .

\_ | Y




5. Logarithmic equation of state for cosmic string I

Linear action formula, L. = —m2(1—|—5*2 w) proposed for weak

2
L

, contrary to effect of Witten's conduction mechanism as calculated by

current by E.Witten, but no good — since would give subsonic V2 <

P. Peter. More realistic supersonic wiggle propagation v > ULQ from
logarithmic formula

L=—-m*=im?In{1+02w} = k=m202/(1+0%w),
valid over finite range, exp{—2m?/m?} < 1+62w < 2. Radial
dependence in circular case given explicitly by

1/r = 2(mm [rC)* (—0*+ /o' +(C[mm2)*(0* /0 2+ N?).
For ratio |b| in “safe” range, exp{—sz/mE} < |b] <2,
(including “chiral” value |b| = 1) the ring can oscillate with
unbounded energy /.

\_ i Y




chiral value |b| = 1. [hep-ph/9609401]
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F1G. 1 — Plot of effective potential 7" against o with various values of

ratio o = m?/m? for |b| = 2mwro|N/C| in “safe” range not too far from

/
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— — - q=(I-1n2)2
S =

-——- =6

=36

possible only for low values of energy /.

N
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F1G. 2 — Plot of effective potential 7" against o with various values of ratio
a = m?/m?2 for |b| = 2mko|N /C| outside “safe” range, where oscillation

/
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— —— Q=(I-1n2)?
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20 + a=36
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F1G. 3 — Plot of effective potential 7" against o with various values of

ratio a = m?/m?2 for |b| = 2wko|N/C| far outside “safe” range, where

no equilibrium nor oscillation is possible.
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‘6. Stationary string states in flat background I

World sheet tangent to unit static Killing vector satisfying V,k” = 0,
with orthog unit spacelike tangent vector €/ satisfying £V, e* = 0 ,
giving first fundamental tensor ¥ = —kHkY + e#e” and second

fundamental tensor A',,,” = e¢,€, /X" with curvature vector

KP* =¢e"V,e" . Flow velocity U of timelike eigenvector,

T‘;u” = —Uu”, specified by expression

ut = (1—v?)"12(kF4vet) .

Free dynamical equation reduces to (U4 — UZT)K'O =0 .

Straight solution, /{” = 0 , possible for arbitrary v , but circular (or
more general) curved configuration must have (generically uniform)
wiggle propagation speed, 1> = T/U .

\_ | Y




7. Stability criterion for circular vorton states I

Stability depends just on velocities v and v, , always holds if subsonic

v? < UL2 . Monopole 7 = 0 and dipole 7 = 1 modes always stable,
but instability may occur for higher modes, n > 2 for which, in state
with radius a , eigenfrequency w given for r = aw/v+ n ., with

v, =20/(14+0?), by cubic: 25 + byx* + b1z + by = 0, in which
bp=T —2—¢,by=—2I+ (1+&) (1—n"2)

b :F(l—n_Q) , Wheref:F(l—Uf),

' = UJZQ(ULQ — UQ)/(l —p? Uz) . Stability criterion A > 0, for

L
roots all real, given by

A = b2b2 + 18byb1by — 4b} — 4b3by — 27bZ . Relativistic limit
£— 0 gives A— dn 2(I'+14+n"H2(I+1—n"1)2, whichis

strictly positive almost always.
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In ulfrarelativistic limit, zone
of instability of 7 th mode is

asympiotic to line thal has
gradient 1/{ 21 -1}

FI1G. 4 — Zones of macroscopic instability of circular vorton states, as

obtained in 1994 by X. Martin on plot of squared rotation (and wiggle)

speed, v?, against squared “sonic” speed v} .
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